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Circulation design is a challenging part of the architectural design process. Architects 

traditionally address these challenges based largely on rules of thumb, personal 

experience, and simple tools. The modern environment, with greater computational 

power available, invites a more careful analysis and consideration. The purpose of this 

thesis project is to illustrate how algorithmic tools can be used to simulate human 

behaviors during the architectural design process or after construction of the building to 

improve building’s performance. To achieve this objective, analysis approaches related 

to congestion, emergency egress, and wayfinding inside architectural space were 

surveyed. Then an algorithmic toolkit was developed based on an artificial intelligence 

pathfinding algorithm called Theta*. Finally, several application prototypes were 
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created to illustrate application of the toolkit to (a) evaluating positive and negative 

implications of congestion in the design of the buildings, (b) assessing congestion 

during emergency egress situations, and (c) assist individuals navigating complex 

buildings. 
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1 – Introduction 
 

This chapter presents an introduction to this Master of Science research. In chapter 1.1, the 

motivation of this research is explained by presenting several challenges that indoor wayfinding 

and indoor navigation present for designing and maintaining architectural spaces and 

introducing some possible solutions for the challenges.  

 

 

1.1- Motivation 

 

One of the problems of urban growth, with its proliferation of roads and rapid expansion of 

complex buildings, is increasingly difficult wayfinding. Be it for work, shopping, healthcare or 

recreation, it can be frustrating and time consuming for people to find their way in unfamiliar 

urban environments or in complex buildings. Some individuals in such circumstances are 

overwhelmed by a feeling of ineptitude which they attribute to a missing “sense of orientation;” 

others blame the architects for designing confusing settings and the graphic designers for 

providing vague signage. Whoever the target of complaint, the irritating and unpleasant 

experience of getting lost influences people’s general attitudes towards the environment. 

Architectural settings spoiled with way finding difficulties are not appreciated by anyone (Passini 

1996). At the urban and regional scale this problem prompted creation of navigation tools like 

Google Maps or Apple Maps, which provide guidance for people to reach their destinations more 

easily. Over the past few years these tools have become established for route planning, but they 

are mainly designed for outdoor environments, since they employ satellite-positioning 

technologies (GPS).  

Although much research has been done on exterior pedestrian navigation systems in the past few 

years, way finding inside complex buildings like hospitals, airports, malls, office buildings, 

universities and commercial centers with complex floor plans has received far less attention by 

researchers and remains a challenging topic. Individuals must depend on their general knowledge 

about the structure of buildings, or their previous experience, and the visual inputs, like posted 
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maps, which they encounter to find their way while moving inside most buildings. They must do 

this without the support of external navigation assistance, so they often fail to find their way 

quickly in complex buildings. Some corporations have mentioned that the irritation caused by 

wayfinding difficulties not only arouses negative feelings for the physical setting, but that it also 

effects people’s impressions of the corporation itself and the services provided in that setting 

(Carpman and Grant 2016). Therefore, a well-established tool offering interior navigational 

assistance would be beneficial both for users of a space (Makri, Zlatanova and Verbree 2015) and 

the organizations that own them. 

Aggregate way finding, which we refer to as circulation, has important implications in the design 

of buildings as well. Uncomplicated circulation inside a building reduces the time spent consulting 

confusing information displays and even liberates individuals from time consuming 

interpretation of vague direction information given by staff. It solves some building efficiency 

issues and has financial impacts that are not easy to calculate. However, there is more to good 

circulation design than efficient movement; one occupant-level spatial quality that interior 

architecture and space planners are interested in is the concept of congestion. This can be both a 

positive and a negative quality in architectural space, as it can encourage productivity (productive 

congestion) in some environments and evoke displeasure in others. Despite extensive research 

into the role of both types of congestion, the lack of a specific tool that evaluates a designed floor 

plan based on this quality is perceptible.  

Another primary problem that difficult wayfinding creates is accessibility. Individuals often avoid 

environments in which they know they will get lost. Contemporary planners avoid building 

complex shopping centers with lots of twists and turns, so that people would spend more time 

wandering around and theoretically shop more due to countless objections and negative 

evaluation of commercial productivity. People with physical or sensory impairments have even 

harder times in buildings with complicated circulation, and inappropriate wayfinding tends to be 

especially challenging for them. These difficulties can create architectural barriers of a 

psychological nature which can be just as disruptive as physical barriers (Carpman and Grant 

2016). 

Building safety is also associated with wayfinding. Emergency evacuation is much more difficult 

in confusing settings. In emergency situations wayfinding decisions must be made quickly and 

problem-solving behavior may be confounded by anxiety-induced stress. Lack of consideration 

for easy and fast access to emergency facilities and exits during the initial stages of architectural 

design by architects can increase the total evacuation time for users of the building during 
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emergency situations like fire, earthquakes, terrorist threats, and so on. Moreover, without 

predictions of the best routes that first responders must take to access various parts of complex 

buildings, the performance of the first responders and emergency teams is reduced because of 

increased time required to provide services for individuals inside buildings.  

Wayfinding influences not only navigation in existing buildings, but also key design parameters 

during architectural design process, especially for large public buildings. Many standards have to 

be met related to the circulation and the paths that users should take in order to access different 

parts of the building. For example, there are fire codes related to maximum distance of each space 

to the closest fire escape, or the maximum distance of each room to the entrance of the emergency 

section of a hospital. In addition, analyzing the accessibility and circulation of a floor plan on the 

basis of design efficiency and convenience for users is beneficial to the architecture design process.  

A toolkit that provides circulation analysis would be extremely helpful, since it could provide 

insights for architects about, for example, the best place to establish amenities inside an office 

based on optimized routes, or about locations that make it convenient for people to collaborate 

with each other, or how long will it take to travel from one place to another inside a building. The 

toolkit could also be beneficial for occupant health by calculating how many calories will be 

burned during travel from one part of a building to another or by demonstrating the desirability 

of using stairs in a building. These benefits would also contribute the efforts of designers and 

building owners seeking Living Building Certification.   

 

 

1.2- Problem Statement   

 

The spread and popularity of algorithmic tools has changed the way architects design (Kalay, 

2004). Architectural design processes have been increasingly developed to foster more thorough 

and precise considerations of numeric criteria like stiffness of a building’s structure, or the 

amount of daylight that a space receives. This is visible within contemporary computational 

platforms, as well as organizational frameworks, which try to implant the variations and 

invariants related to a building’s materiality, its internal spatiality, and its external relations with 

a solid process structure (Ahlquist, Sean and Menges 2011). Simulation techniques are a critical 
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part of the current digital design framework and can be applied to building design, although they 

are mostly in the domain of engineering. 

To analyze human-level concerns, such as how the space feels, how the space will be utilized, or 

how the layout of the space matches the needs of the program, architects often rely on agent-based 

crowd simulation models that predict the movement of people in a space. The results of these 

analyses are extremely accurate; however, since they must be calculated dynamically (over a series 

of time steps), they are also computationally expensive and time consuming, often taking hours 

or even several days to return the results for a single design (Nagy, et al. 2017). Although these 

analyses may be suitable to validate some design projects based on their functionality and needs, 

they may not become part of the architectural design framework due to their expensive required 

resources (time and computing power). 

 

On the other hand, there are three main problems that make developing an indoor navigation tool 

challenging in contrast to outdoor PNS (Pedestrian Navigation Systems): 

1. Lack of reliable position information inside a building (Li, et al. 2012). 

2. Lack of proper data (maps) designating the locations of the obstacles, routes, walls, and 

destination inside a building. 

3. Complexity of indoor space configuration and freedom of users’ movement inside the building. 

Availability of satellite-positioning technologies (GPS) in outdoor environments provides the 

possibility of locating the user with accuracies to a few meters radius in outdoor environments, 

depending on the strength of the GPS signal. However, these technologies are not available for 

indoor spaces. This is due to the fact that signal to noise ratio of satellite signals are usually close 

to the threshold for detection of GPS receivers, so GPS signals are not detectable indoors, specially 

behind concrete walls. Apart from that, high frequency signals like GPS (1500 MHz) do not 

propagate inside buildings, since they will get absorbed much more by objects. 

Unlike outdoor navigation systems where location information provided by GPS is paired with 

rich databases of road networks and obstacles provided by satellite-derived map data to produce 

navigation, indoor spaces lack such information and database, hence the path networks in indoor 

environments must be computed. Such path finding algorithms often rely on graph theory and 

graph representations, which is an area in mathematics that studies mathematical processes and 

data structures used to model pairwise relations between objects. Therefore, generating a decent 
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network and data model that simplifies a building structure and floor plan is crucial for deriving 

the overall connectivity of spaces in a building and for representing positions of objects, obstacles 

and walls within the environment. Producing such a model for various indoor environments 

automatically is one of the challenges of indoor PNS. 

While individuals’ movements are restricted by massive obstacles like buildings or roads in 

exterior environments, the only objects that limit people’s movements inside a building are walls 

and furniture, hence they have unlimited paths to take in order to go from one place to another 

inside the space between the interior borders of buildings. The freedom of human movements and 

complicated paths they take inside a building presents another challenge to developing indoor 

navigation systems, but it is also one of the reasons that various search algorithms have been 

developed for wayfinding purposes. The paths generated by Artificial Intelligence search 

algorithms have to maximize the usability and successful navigation while minimizing the chance 

of a user getting lost. They also have to mimic human movements. Developing and using more 

sophisticated and smart pathfinding AI algorithms that simulate human movements are essential 

to developing a practical indoor navigation system.  

There are additional challenges in developing an indoor PNS. The path network construction 

process may not be easy and straightforward due to complex indoor space configurations. 

Considering the rich semantic information invested in building components like indoor furniture, 

or elevators or stairs that provide a choice for users who want to move from one floor to a space 

on another floor, and the lack of rich semantic models with room adjacency information in them 

are some of the other challenges of indoor navigation systems. 

 

 

2 - Background 
 

In the past decades, many researchers from multiple fields have studied PNS. This review divides 

that work into four main categories. First, many studies have been done in computer science and 

robotics on generic search algorithms. Second, studies about extracting interior information 

about a building from a CAD or BIM model, or research on building the 3D model of the physical 

environment in real time, using a camera or laser scanner. Third, research done on locating a user 
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inside a building in real time. Fourth, studies related to representation of indoor location and 

navigation information to users of indoor space. This review introduces some of the most 

important studies in each of the four categories and explores their pros and cons in order to 

support development of a better indoor navigation tool for specific tasks.   

 

 

2.1 – Pathfinding Algorithms    

 

Any algorithm that solves a search problem is called a “search algorithm” in computer science, 

which means the algorithm extracts information stored within some data structure or calculated 

in the search space of a problem domain. It is possible to categorize search algorithms based on 

their mechanisms of search. Recent developments in artificial intelligence provide the possibility 

to solve problems that were unsolvable with exhaustive enumeration search algorithms. In 

addition, current AI algorithms are many times faster and more reliable than classical search 

algorithms. Finding the optimal route between two points (called “routing”) is one of the 

categories of search problems that is now solvable cheaply and reliably thanks to advancements 

of artificial intelligence.  

The standard routing AI algorithm is the Dijkstra algorithm developed by E. W. Dijkstra (Dijkstra 

1959). This algorithm finds the shortest path between nodes in a graph. The algorithm labels each 

position with its distance from the start node along the best-known path. Initially, no path is 

known, so all the nodes are labeled infinity. As the algorithm proceeds and the paths are found, 

the labels may change, reflecting the better paths. Simply put, the algorithm calculates the fastest 

path between two nodes as a function associated with the cost of travelling. 

The main drawback of the original Dijkstra algorithm is that it explores an unnecessarily large 

search area. This led to the development of heuristic search algorithms that instead of searching 

all nodes, look for shortest path in the direction of the destination node. These have names like 

A*, D*, D*-Lite, Theta*, AP Theta*, etc. Hart, Nilsson and Raphael 1968 developed the A* 

algorithm that avoids considering directions with non-favorable results and decreases 

computational time by finding the nodes on the shortest path based on their distance from the 

start node and distance from destination node. 
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Stentz (Stentz 1994) introduced the D* (Dynamic A*) algorithm, which searches an environment 

that is either completely unknown, or when only partial information about it is available, to find 

the shortest path between two nodes. The algorithm makes assumptions about the unknown parts 

of the environment and starts looking for the optimized path based on the initial assumptions. If 

new map information (such as previously unknown obstacles) are observed during the search, the 

information will be added to the map and, if necessary, a new shortest path will be computed from 

the last node found to the destination node. 

One of the downsides of all the grid-based pathfinding algorithms like A*, D* and its variants (D*-

Lite, Focused D*, etc.) is that paths formed by grid edges can be sub-optimal and unrealistic 

looking, because the possible headings are artificially constrained. As an improvement, Nash et 

al. (Nash, et al. 2007) developed the Theta* algorithm that searches grid-based models to find the 

shortest realistic looking path without constraining it to grid edges. The algorithm considers line 

of sight from node to node in order to find the optimal path. The realistic looking paths that Theta* 

algorithm finds are extremely close to human movements, so Theta* is an appropriate algorithm 

for human movement simulation. 

There are a variety of routing algorithms available specifically for traversing road networks. For 

instance, a dynamic programming approach was developed by Bellman (Bellman 1958) to 

minimize the travel time between two points. In his approach the cost of traveling between a set 

of locations that are connected by road are time instead of distance. Also, a finite number of 

iterations is mandatory in his iterative algorithm. 

 

 

2.2 – Indoor Navigation and Model 

 

Zlatanova (Zlatanova and Baharin 2008) studied the movement of mobile rescue units in 

emergency situations in order to provide a solution for navigating on road networks. They 

assumed that the locations of the moving objects (rescue units) are recorded uninterruptedly in a 

Database Management System (DBMS) and organized according to a predefined spatial-temporal 

schema. They considered information factors related to generic groups named: spatial, user, and 

event information. Their emergency response network model of the navigation tool represented 
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the road network, the characteristics of the emergency event, information about the user, and the 

optimal route generated by the A* algorithm provided by the pgRouting extension of PosGIS. 

Wu et al. (Wu, Marshall and Yu 2007) used A* and Dijkstra’s shortest path algorithm to navigate 

through an “Intelligent Map” which is based on a new data structure called “Cactus Tree” to 

provide indoor navigation guidance for sightless individuals. Their approach consists of three 

components: Cell decomposition, Cactus tree-based path planning for indoor space, and A* based 

path computation. Cactus tree has pre-knowledge of relationships between indoor elements that 

Intelligent Map provides. Since this non-linear data structure is an ordered/sorted tree, the 

structural connection is richer than the simple “before” and “after” relationships among objects 

in sequences. The objects are “left”, “right” and “branches (below or equal)” to other objects in 

this tree. Eventually, the path following algorithm used by them is based on dead reckoning. 

However, they integrated human factors, plus data about the flooring and furnishing structure 

beside the intentional path that was planned. Although their approach is promising for assisting 

visually impaired people to navigate indoor environments, unrealistic paths generated by the A* 

algorithm and visibility graph is one of the main drawbacks of the proposed approach.   

Chen and Feng (Chen and Feng 2009) developed two fast flow control algorithms for real-time 

emergency evacuation of populous places such as shopping malls, subway stations, campus 

buildings, etc. to minimize the overall evacuation time based on the properties of those buildings. 

The first algorithm was developed for situations where there is no limit on the allowed number of 

evacuation paths, while the second algorithm was developed for situations where a limited 

number of evacuation paths are available. They used a network of “nodes” representing the 

locations inside the building (rooms, corridors, stairs, halls, etc.) and “arcs” representing the 

travel path between two nodes. Then, the Dijkstra algorithm was used to find the shortest paths 

from the given source location to each one of the exit doors. They calculated the traversal time of 

each path by dividing the length of each path by the average walking speed of people. Eventually, 

to illustrate real-time application of the developed flow control algorithm, they integrated a 

preliminary head-mounted augmented reality display (HMD) which tracks the position and 

orientation of the user in their evacuation system. Omitting all the indoor objects and furniture 

in order to abstract the navigation model, plus unrealistic paths generated by the Dijkstra 

algorithm are the main limitations of this approach.   

Xu and Van Doren (Xu and Doren 2011) developed a “Museum Visitors Guide (MVG)” in the 

Greenfoot programming environment using an optimized A* algorithm to provide navigation 

guidance for museum visitors. Their application allows the user to find the shortest route to 
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his/her favorite artwork(s) from his/her current location using any computer that is conveniently 

located in the museum. The application reacts dynamically to the modifications of the floor plan, 

and/or locations of the exhibits, plus emergency situations that might make part of the currently 

suggested path invalid and regenerate a new path if it can. The application also allows the user to 

select multiple artworks and it generates the quickest route to cover them all. Finally, the 

application provides guidance for a user to avoid fire while he is inside the museum. One of the 

main disadvantages of this approach is that, navigation assistants (computers located inside the 

museum) are not capable of tracking user while he moves from one place to another, since they 

are statically located. Apart from that, their proposed navigation model is too abstract and did not 

consider indoor furniture and objects. 

Xu et al. (Xu, Wei and Zlatanova, AN INDOOR NAVIGATION APPROACH CONSIDERING 

OBSTACLES AND SPACE SUBDIVISION OF 2D PLAN 2016) proposed an indoor pathfinding 

approach that takes obstacles of different shapes into account, subdivides the remaining navigable 

space using the Delaunay triangulation algorithm and generates a network, which provides 

realistic navigation by using a Visibility Graph. They processed the available indoor spatial 

information to generate the navigation network. In order to provide geometrical information 

about the indoor objects, they described them as points, lines and polygons. For instance, they 

represented doors by their midpoints, walls were represented as a line connecting the two ends, 

and indoor objects were represented as lines, triangles and polygons based on their size and 

location in the room. Next, they constructed the network of paths by subdividing the free space 

into triangles. The center of gravity of each triangle was chosen as a node in the network of 

navigation, and by connecting all the nodes together, excluding edges that cross the obstacles, the 

network of paths was generated. Figure 1 illustrates the process used in this study to generate the 

network of paths from a simple floor plan. Eventually they traversed the network in order to find 

the path from each node in the network to another node. One of the disadvantages of the proposed 

approach is that, the process of extracting the navigation model from the architectural documents 

and abstracting it is not completely automated. Apart from that, the computational process of 

generating the routes network by connecting the centroids of triangles is computationally 

expensive. In addition, the navigation model generated in this approach is extremely abstracted, 

and the paths generated by the algorithm are neither optimized nor realistic.  
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Figure 1: Generation of network of paths from a simple floor plan from left to right. 

 

Xu et al. (Xu, Wei, et al., BIM-BASED INDOOR PATH PLANNING CONSIDERING OBSTACLES 

2017) in another study used Industry Foundation Classes (IFC) to extract semantic, topological 

and geometric information related to indoor space and furniture and used it to develop a 3D 

indoor navigation system on a multi-floor building. They extracted geometrical information, like 

the floorplan outline, building components (e.g. tables, chairs, cupboards, beds and sofas), 

facilities and equipment (e.g. bathroom and kitchen furniture), as well as semantic data, like 

privacy level of the space, entry door status (if door is locked or not), “association between space 

and related building elements, and the relationship between an element and the spatial structure 

(IfcRelContainedInSpatialStructure)”, and generated a grid subdivision based on the extracted 

information. In this way, they created a navigable network for each floor. They then produced the 

total navigation graph of multi-floors by connecting the graph of every floor together through 

staircases or elevators.  Eventually, the Dijkstra algorithm was used for path planning avoiding 

the obstacles. The navigation model extraction process proposed in this research is automated 

and generates a model with acceptable levels of detail. However, the path finding algorithm used 

in this work is slower than most of the grid-base path finding algorithms. In addition, paths 

generated by the Dijkstra algorithm are unrealistic and not similar to human movements in most 

cases. 

Diakité and Zlatanova (Diakité and Zlatanova 2016) have proposed a workflow for extracting free 

navigable space from a fully furnished 3D model, which can then be used to support pedestrian, 

robot, and drone navigation systems. The authors indicate that, while the existing approaches use 

simplified representations of the space and ignore the objects inside, their workflow models the 

indoor navigable space with enough complexity to precisely know where a subject can move inside 

the building. They presented two approaches for extracting the navigable space from the 3D model 

without ignoring the inside objects based on the format of the input 3D model of the building. 

Their first approach could be used to automatically extract geometrical and semantic information 

from an IFC input mode. The second approach could be used to extract information about the 

building that just contains a geometrical description in the form of 3D CAD models of their 



www.manaraa.com

11 | P a g e  
 

interior design. One of the drawbacks of the proposed workflow is that the stability and reliability 

of the result depends on the quality of the input IFC or CAD model. Apart from that, their 

approach seems extremely promising for indoor navigation systems. 

Zhu et al. (Zhu, et al. 2013) developed the Chinese standard of Multidimensional Indoor Location 

Model, which describes ontology of indoor location. The model corresponds to 3D concepts like 

CityGML and IndoorGML (Geography Markup Language). The goal of their study was to develop 

an exchange GML-based format for indoor navigation. They hypothesized that 

nonrepresentational indoor locations can be formally described using qualitative (semantic) and 

quantitative (geometrical) information. They argued that current indoor location services may be 

providing contextual noise and lack user-concerned data about the location. They proposed a 

richer, multi-dimensional indoor location model that represents absolute and relative geometrical 

and semantic information about indoor space for the user.  

Liu and Zlatanova (Liu and Zlatanova 2011) developed a pathfinding algorithm that represents 

“natural movement of pedestrians” inside the floor plans of buildings with complex indoor 

structures. The proposed algorithm which is called “DOOR-TO-DOOR” is interpreted as the direct 

walking route from one door to the next visible door or the shortest feasible route between two 

invisible doors. The algorithm is a typical network-based algorithm that treats the doors as nodes 

and the rooms as edges of the network in contrast to network models that treat doors as edges 

connecting rooms (nodes). The algorithm is organized with a two-level approach. First, the 

shortest path between the location of the user and the final exit will be generated using the 

Dijkstra algorithm (Dijkstra 1959), this route describes which rooms and corridors must be passed 

in order to arrive to the final exit. Second, when a pedestrian arrives at the door attached to a 

room a shortest path inside the room will be generated using Dijkstra algorithm between the start 

door and the target door in the room without considering the interior obstacles (e.g. furniture, 

pillars, other pedestrians, etc.). Finally, the algorithm provides the door-to-door path obtained at 

the room level for the pedestrian according to the sequence of rooms obtained in the floor level. 

The presented work has several major drawbacks. First, no interior obstacles (e.g. furniture, 

columns, other occupants, etc.) are considered in this method and rooms were assumed to be 

completely empty. Second, running the path finding algorithm twice reduces the speed of the 

process and might make the algorithm useless in some design methods like generative design 

process where many design options will be generated algorithmically and evaluated based on a 

given design goal to discover one or more high-performing solutions for the design problem, plus 

rich semantic models that hold room adjacency information required for the first step of the 

algorithm are not currently available for all buildings. Finally, paths that connect doors to each 
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other are not reliable and efficient, since most of the time initial location or destination of the 

individuals is somewhere within the boundaries of a room not at a door. 

Mortati (Mortari, et al. 2014) proposed a novel algorithm for extracting the so called “Geometric 

Network” graph, which holds both metric (i.e. Euclidean distance between nodes) and topological 

information (i.e. connectivity of nodes) for indoor navigation to overcome the weaknesses and 

constraints of the existing approaches in the literature. They assumed that a semantic geometric 

model of the building is available and developed their algorithm in a hierarchical two-level 

approach similar to Liu and Zlatanova’s (Liu and Zlatanova 2011) approach. Firstly, a weighted 

graph that only includes inter-space connectivity was constructed. A shortest path algorithm 

(Dijkstra) was launched on top of the graph in order to find the sequence of spaces between a 

source and a destination (Figure 2). 

 

 

Figure 2: Sequence of spaces between start point and destination. 

 

After determining the sequence of rooms, they generated the physical path incrementally room 

by room along the defined sequence of rooms. The algorithm that generates the physical path on 

the 2D floor plan consist of six geometrical operations:  

1- Inward offsetting of the footprint of the space. 

2- Sampling of the boundary of the originating polygon. 

3- Computing a Constrained Delaunay Triangulation on the sample points. 

4- Dividing each mesh face that has no constrained edges into three smaller triangles. 
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5- Assigning the nodes that represent topographic space in dual representation to the space they 

belong. 

6- Linking nodes to each other based on adjacency of the topographic space they represent in 

original space. 

In contrast to the “DOOR-TO-DOOR” approach that was mentioned before, the “Geometric 

Network” does not ignore indoor obstacles; however, room adjacency information is still required 

for the first part of the algorithm and paths generated by it are not optimized and are dissimilar 

to natural human movements. 

Goetz and Zipf (Goetz and Zipf 2011) developed a model that represents indoor environments 

with topologic, semantic and metric information that allows nearly length-optimal routing in 

complex building structures (2D floor plan). They extracted the graph elements manually from 

floor plans and gathered additional semantic information for various functions of the graph. The 

authors also focus on related parts of a complex indoor space which are required for network 

construction like corridors and stairs. Additionally, they consider obstacles and special semantic 

areas inside rooms and how to incorporate those areas in the routing graph by adding additional 

nodes to the graph manually. One of the main advantages of this work compared to other research 

in this area is that the authors considered indoor obstacles and furniture; however, the process of 

adding nodes around obstacles manually makes the generation of the navigation model slow and 

not automated. In addition, the resulting paths are not optimal and appear unrealistic, especially 

around obstacles. 

Nagy (Nagy, et al. 2017) proposed a concrete methodology by which architects can evaluate and 

quantify productive congestion within their architectural designs. First, they generated a traversal 

graph with evenly sampled nodes and overlaid it onto the floor plan in a way that it covers the 

entire bounding rectangle of the floor plan. They removed any edge of the graph that intersects 

with any of the indoor obstacles. Eventually, they connected the start and destination nodes to the 

traversal graph and performed a Dijkstra path finding algorithm on it to find the shortest path 

between pairs of start and end nodes. After finding the shortest paths between start and end 

nodes, all other nodes were labeled based on their level of participation in routes between start 

and goal nodes. In order to compute the metric to measure the total amount of congestion and its 

distribution through the space, they found the centroid of all nodes, weighted by their dissipated 

traversal values, then they connected this centroid value as a node into the analysis graph and 

computed the shortest routes from each node with traversal value higher than zero to the centroid 
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node. The authors suggested that the resulting “buzz” metric is the sum of the length of these 

routes, weighted by the traversal value of the starting node (Figure 3).  

Although their method provides one single number for measuring the productive congestion 

inside a building, their method for creating the traversal graph is not efficient and effective. 

Hence, the shortest routes they used for measuring the congestion metric are not optimized and 

are dissimilar to human movement. Therefore, their analysis results might be different from what 

will actually happen in the real world. 

 

 

Figure 3: Congestion metric equation. 

 

 

2.3 - Localization and Positioning 

 

Location information related to the pedestrians and goods inside buildings is essential for indoor 

PNS. However, gaining spatial data inside a building is a challenging task. A variety of 

technologies have been used for positioning, localization, and mapping indoors in the absence of 

GNSS (Global Navigation Satellite System aka GPS). However, constraints in accuracy and 

coverage, plus expensive infrastructure requirements limit the existing solutions to only a few 

successful circumstances (Khoshelham and Zlatanova 2016). This section provides an overview 

of some of the most recent developments in sensor technology, and it offers a methodology for 

indoor localization and mapping. 

There are many different technologies that have been developed recently for indoor positioning, 

such as ultrasound, infrared, Wireless Local Area Network, Bluetooth, Radio Frequency 

Identification (RFID), and Ultra-Wideband. The RADAR, LANDMARC, and Place Lab techniques 

are the most representative of these approaches. However, these schemes involve installation of 

additional hardware devices and complicated infrastructures. On the other hand, the 
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development of intelligent mobile terminals (smartphones and tablet computers), provide a 

handful of advanced technologies, (Wi-Fi, Bluetooth, and inertial sensors) that can be used for 

providing personalized indoor positioning information. The studies mentioned below focus on 

solving the indoor localization problem using inertial sensors, accelerometers and gyroscopes, 

which are available on most smartphones. The localization approximation in these studies is 

mainly based on the Pedestrian Dead Reckoning (PDR) method, which involves step length 

calculation using accelerometer data. 

Chen (Chen, et al. 2015) developed an indoor positioning system by integrating the WiFi 

fingerprinting positioning method with PDR (Pedestrian Dead Reckoning) positioning method. 

They invented a new step counting algorithm called “auto-correlation” that “calculates the 

number of steps according to the similar acceleration of a pedestrian continuous motion”. This 

algorithm reduces the effect of the phone’s position and pedestrian’s movement on the step count 

result. The motion of the user is separated to two scenarios: idle, which includes all static states, 

like standing up, sitting down, etc., and walking, which happens when body location changes 

while the phone is being carried. It also reduces the effect of phone’s position, which is condition 

of the phone while being carried (i.e. it is being carried by hand or inside a pocket). In the Wi-Fi 

Fingerprinting localization approach, they suggested the K-means clustering algorithm to 

decrease the resource cost of the location algorithm and increase the time performance of the 

system without changing the localization accuracy. Outcomes of using the algorithm on an 

experimental setup indicated that it can reduce the error that instability of Wi-Fi signal creates in 

positioning result.  

Diaz (Diaz 2015) claimed to present the first inertial step and heading navigation system that 

considers vertical displacements without using extra sensors, like barometer, GNSS, Wi-Fi access 

points, or having extra information, such as maps. The proposed pocket navigation system 

consists of two subsystems, hardware and software. The hardware subsystem consists of a 

magnetic and inertial measurement unit (MIMU). The software subsystem has two main parts. 

First, the orientation estimation algorithm, which consists of an unscented Kalman filter (UKF), 

whose states are the Euler angles roll, pitch and yaw and the biases of the gyroscope, and it utilizes 

the accelerometer and magnetometer to correct the orientation estimation. Second, the position 

estimator which consists of the step detector, the step length estimator, and the vertical 

displacement estimator. The proposed system utilizes the pitch angle in the three main algorithms 

of the position estimator. For evaluating the proposed system, it was tested in Deutsches Museum, 

which is a well-known museum in Munich. The result of the experiment shows that system has 

less than 1% error in detecting vertical displacement of the pedestrian. Eventually, they concluded 
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that using the pitch angle is recommended not only for detecting steps and calculating the length 

of it, but also for approximating the height of the steps of the staircase, which leads to estimating 

the height of floors. The main disadvantage of this system is lack of an accurate orientation 

estimation. Since the pitch and yaw angle directly influence the position estimation, it is required 

to count with an accurate orientation estimation algorithm to avoid errors.     

Chen (Chen, et al. 2015) proposed a combination of RSS-based localization methods and PDR 

localization methods and developed a system that can overcome the drawbacks of each and 

provide positioning information with a precision of 1 meter by identifying indoor landmarks. They 

presented a WPL (weighted path loss) algorithm that omits the tedious manual process of 

collecting a training dataset for the machine learning algorithm used in the Wi-Fi fingerprinting 

approach. The WPL algorithm is also more suitable for resource-limited smartphones, since it 

does not rely on heavy load machine learning techniques. Therefore, they used the WPL method 

to provide accurate information about the initial position of the user. In order to overcome the 

accuracy problem of the PDR positioning approach on long distance, the authors leverage the 

landmarks, whose positions are known, as new starting points to restart the algorithm when the 

pedestrian reaches them. Landmark identification was done using their specific sensor patterns. 

They used accelerometer, magnetometer, gyroscope, barometer and Wi-Fi to identify landmarks, 

like turns, elevators, escalators, stairs, and doors. 

Qian (Qian, et al. 2015) proposed a reliable real-time indoor localization method that uses 

inexpensive smartphone inertial sensors by considering the phone in four different conditions 

(texting, calling, in-hand, in-pocket), plus indoor vector graphs to address the PDR long range 

inaccuracy problem. Their positioning approach consists of three main components. First, the 

data preprocessing component, which calibrates, interpolates, and filters the retrieved data from 

accelerometer, gyroscope and magnetometer. Second, a PDR component, which calculates the 

position of the user by utilizing the output processed data of the first component. Third, the 

particle filter component, which is in charge of fusing the ultimate localization results for external 

usage by providing feedback data to rectify the step length and heading error from PDR with the 

constraint state of an indoor vector graph.   
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3– Theoretical Background  

 

3.1- Architecture Circulation and 

Wayfinding 

 

During the architectural design process, architects must pay close attention to movement and 

rest, which are concerned with circulation and wayfinding inside a building. Connectivity of 

spaces and how people flow through them are important criteria in architectural design. The way 

occupants or users of a building move through and interact with the building directly affects their 

feeling for the building and what they experience while they move inside it.  

Wayfinding relates to the deliberate circulation of individuals and their mental ability to locate 

themselves in a setting (Passini 1996). And pathways or circulation routes must have two 

properties to be effective. First, they must be clear and unhindered. Second, they must provide 

the shortest walk between two points in the space. A good circulation design provides the 

possibility for people to move inside the building with ease and efficiency, without disturbing 

others, and without the sensation of getting lost. These characteristics are less important in 

residential and other small-scale projects that are easily understood. However, in complex 

projects like office buildings, commercial centers, healthcare projects, etc. circulation is a critical 

aspect of architecture design. In these types of projects inappropriate circulation design can create 

problems for occupants and users of the building, and a decent circulation design of the project 

can improve various aspects of daily life for occupants as well as the building owners’ economic 

goals. 
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3.1.1- Congestion 

 

Congestion is an occupant-level value that has recently drawn the attention of architects, interior 

designers and space planers. In most building and urban space layouts, congestion has been 

considered as a negative quality. Congestion can cause discomfort and frustration, or even can be 

harmful in some situations. For instance, in urban areas with high rates of population and 

employment growth, traffic congestion can cause fear and unsafe sensations, which will affect 

lifestyles of individuals and threaten a city’s economic success (Abdelgawad, et al. 2011). In 

healthcare settings, providing proper health services can be strongly affected by spatial layouts 

and patient flow inside the building. It is possible to omit or reduce the cost of alleviating 

strategies by predicting the flow patterns of patients and clients inside the hospital and modifying 

the circulation layout of the building, if necessary, during the design process of the project 

(Johnson and Happ 1977).  

 

 

3.1.1.1- Productive Congestion and Serendipity 

          

Although congestion is considered to be a negative quality for most architecture spaces, in some 

buildings, like knowledge work environments, some level of congestion is beneficial for 

increasing the productivity of individuals. 

“Knowledge work” as Peter Drucker describes it is the work that happens mainly by mental 

activity instead of physical effort (Drucker 1959).  This type of activity consists of planning, 

investigating, interpreting, developing, and generating products and facilities by utilizing 

information and concepts as the raw material, so it is considered as high-level mental activity 

(Suchman 2000). Since knowledge work is both cognitive and social, workers require time by 

themselves to develop their thoughts and process their thinking to aid their creativity (Claxton 

2000). However, to make raw ideas and concepts useful to an organization they must be shared 

with others for further advancement. Therefore, conversations and interactions that convey one 

person’s thoughts to others are extremely important parts of knowledge work. This transmission 

occurs through social networks where individuals come across one another throughout the 

normal working day in both official and unofficial settings (Brown and Duguid 2000). 



www.manaraa.com

19 | P a g e  
 

Nowadays, the quality that provides the possibility for conversation and interaction in a 

knowledge work workplace layout is often called “serendipity”1, which refers to creativity these 

days (Lindsay 2013).  

In an office, while strongly grouped teams do well at solving problems in their knowledge work, 

they lack the connections to identify complementary thoughts from other groups or other parts of 

the company. Hence, unintended face-to-face conversations among people with various sets of 

skills and expertise might generate new ideas and solutions or at the least, increase solidarity 

between staff in the workplace.  

Large companies have begun to realize this value and have begun looking for new ways to 

encourage interaction among employees from different departments that do not regularly work 

together. This interest, in combination with the increasing interest in algorithmic solutions and 

analysis in design is leading architecture firms that design workplaces to take a scientific approach 

to analyze office floor plans, compute the likelihood that employees will meet inadvertently, and 

identify the spots that these congestions occur. These scientific analyses provide the possibility 

for architects to increase the serendipity value of their design and decide on the best places for 

deploying amenities inside the building to maximize casual conversations between employees. 

For instance, when NBBJ architects designed the new Google headquarters building in ??, they 

did so in a way that facilitates the staff’s collaboration and bumping into each other. They analyzed 

how fast people can flow inside the building by measuring the diameter of the space from various 

angles. They also made the floor plan narrower than in regular office buildings to reduce the 

distance between various teams (Silverman 2013). 

 

 

3.1.1.2- Wayfinding in Existing Buildings 

 

As mentioned before, one of the major issues that inappropriate circulation and wayfinding design 

will cause is difficult wayfinding. People avoid putting themselves in a setting in which they feel 

they will get lost. This is even worse for people with physical impairments. The sensation of being 

                                                        

1 The British noble Horace Walpole invented the term in a 1754 letter in which he used the term referring 
to inadvertent finding. 
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lost in an architectural space creates a psychological barrier that stops people from going to 

buildings with complex circulation. Since most public buildings like shopping malls, commercial 

centers, hospitals, etc. are complicated buildings, the barrier that difficult wayfinding creates 

around them can be extremely harmful to the main functionality of these buildings and can 

threaten the economic goals of their owners.  

Although most architectural firms realize the importance of appropriate circulation and 

wayfinding and try to improve these aspects of their future projects by doing scientific analysis, 

many public buildings with complicated circulation already exist in cities around the world. 

Wayfinding can be extremely difficult in them, and people do get lost in these complex public 

settings regularly. Modifying these buildings’ layouts is either extremely expensive, or not 

practical in most cases. Addressing the problem by adding graphic displays and signs to interior 

components of the buildings is considered a poor work-around, and often conflicts with the 

interior architecture of the building and may still prove hard to interpret. These signage solutions 

are also very little help to people with sensory disabilities. Therefore, providing personal mobile 

wayfinding assistance for users of these settings by utilizing artificial intelligence might be the 

answer to difficult wayfinding issues in existing complex public buildings.  

 

 

3.1.1.3- Circulation and Emergency Evacuation 

 

There is no denying that more sensitive design of buildings is crucial for reducing the casualties 

during disasters. Although many buildings never actually experience a serious disaster, 

considerations for emergency evacuation is extremely important part of the building design 

process, especially circulation design. Although much legislation and many regulations that direct 

egress design are provided in building codes, evaluating the actual performance of the building 

during egress is extremely difficult. Apart from that, a great portion of disaster regulations are 

associated with providing a safe escape route in the case of hazard while in many conditions that 

is not sufficient to guarantee safe evacuation of the building. For instance, in large occupancy 

buildings like office blocks, shopping malls, hospitals, department stores, etc., where many people 

evacuate the building during disaster, some individuals may obstruct the evacuation of others due 

to high level of congestion.  The effect of traffic and congestion in the escape route during 
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emergency egress can be more dangerous than the disaster itself when large numbers of people 

are involved (Canter 1980).  

Time is the most important parameter for pedestrians when the decision to leave the building has 

been made due to disaster. All their activities from this point is toward one goal: escape. 

Experiential data shows that main reason of casualties during an emergency egress is usually 

angst an impulsive behavior of the crowd under panic instead of disaster itself. On the other hand, 

there are three specific factors affecting the time required for an individual’s egress (Canter 1980): 

1- Individual’s confusion in choosing the exit paths. 

2- Length of the exit path. 

3- Individuals traffic during evacuation and extensive queue of people in the bottlenecks. 

Since all three factors are directly related to circulation design of the building, it is safe to say that, 

a toolkit that evaluates emergency evacuation of a floor plan during the design process and 

provides insights about congested areas and individuals’ traffic would be extremely helpful in 

reducing the casualties experienced during a disaster. 

 

 

3.2- Problem Space, Grids and Graphs  

 

The main requirement of a pathfinding algorithm is a topological model that defines relations 

between spaces and discriminates walkable places from obstacles and walls. The problem-space 

model is the environment in which a search operates (Newell and Simon 1972). It consists of a set 

of states of the problem, and a set of operators that change the state. Generally, two types of 

topological models are being used in a pathfinding process: a graph or a grid. Both of these models 

contain nodes representing locations in the space and edges that defines connections between 

nodes. Two steps are required for generating a graph: First, a set of nodes must be defined that 

represent location in space or cells of space. Secondly, connections of the nodes must be defined 

(Figure 4). 

 A raster model is a grid that can be considered a geometrical and topological model at the same 

time (Figure 5). Every node of the grid has between four to eight neighbors. While nodes of the 
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grid represent the occupiable positions in the space, edges of the grid that connect nodes to their 

neighbors determine the connectivity of nodes within the model and represent possible paths for 

going from one node to another.  

The main difference between a grid and a graph is the number of connections between nodes in 

each of them. While each node of a graph can have various number of connections, grid nodes are 

only connected to their closest neighbors. 

 

 

Figure 4: Graph. 

 

 

Figure 5: Grid. 
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3.2.1- Static and Dynamic Model 

 

A model in which a path is computed might be dynamic or static. A static model does not change 

over time, whereas a dynamic model might alter over time. For computing paths in changing 

environments, dynamic models are required. One example of pathfinding in changing 

environments is navigation of discovery robots that search the surface of other planets like the 

Moon or the Mars, where the landscape is constantly changing. Another example of application 

of dynamic models is navigation during emergency evacuation, where parts of floor plan might be 

inaccessible due to fire or debris.  Due to the lack of reliable information, and unanticipated 

changes happening on the landscape of other planets, discovery robots use dynamic models that 

are constantly being updated based on the robot’s received data from the environment for 

pathfinding purposes. 

 

 

3.2.2- Single Agent or Multi Agent 

 

Pathfinding can be done for a single or for multi agents (i.e. simulated agents, robots, or people). 

Regularly, a static model is required for pathfinding for single agent. However, finding a path for 

multiple agents requires a dynamic model. Each agent’s volume has to be included in the 

pathfinding calculations since agents should not collide with each other. Apart from that, 

pathfinding methods used for finding routes for an agent are not practical and efficient enough to 

do for hundreds of actors at the same time. Multi-agent pathfinding requires extreme 

computational power, so a real-time solution might not exist. Therefore, wayfinding for multiple 

agents needs a different method, like dynamic agent-based crowd simulation. 
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3.3- Pathfinding and Artificial 

Intelligence 

 

Search is a universal solution finding mechanism in artificial intelligence (AI). One of the 

characteristics that discriminates AI search algorithms from other graph-searching algorithms is 

the size of the involved graph. For instance, the graph representing the entire chess game is 

approximated to have more than 1040 nodes, so finding a solution in this graph with traditional 

search method, which checks all the possible solutions would take millions of years. Consequently, 

the problem-space graphs of AI problems are never represented by listing each state, but rather 

are represented by identifying an initial state and a set of operators to generate new states from 

existing ones.  

The sequence of steps required for finding the solution is not known in AI problems theoretically, 

and they must be determined by a trial-and-error inquiry of alternatives. AI search algorithms are 

used to address three generic classes of problems frequently: single-agent pathfinding problems, 

game playing, and constraint satisfaction problems (Korf, Artificial intelligence search algorithms 

2010). This section provides fundamentals of search algorithms and explains some of the basic 

algorithms in more detail. 

 

 

3.3.1- Brute-Force Search 

 

Brute-force searches are the most generic search algorithms, because they do not require any 

specific domain knowledge. A search environment state description, a set of legal operators, an 

initial state, and a description of the desired solution are all that a brute-force search requires. 

The most famous brute-force search methods are breadth-first, uniform-cost, depth-first, depth-

first iterative-deepening, bidirectional, and frontier search. 

It is worth mentioning here that, in the upcoming text, to generate a node means to create the 

data structure corresponding to that node, while to expand a node means to generate all the 

children of that node. 
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3.3.1.1- Breadth-First Search 

 

Breadth-First search (BFS) is an algorithm for searching decision tree or graph data structures 

invented by Konrad Zuse in 1945. BFS expands nodes in order of their depth from the root and 

generates one level of the tree at a time until it finds a solution (Figure 6). The easiest way to 

implement it is by maintaining a first-in-first out queue of nodes, that contains just the root at 

the beginning, and always removes the node at the head of the queue and expands by adding the 

roots’ children to the tail of the queue. 

Since it always generates a node in the tree after all deeper nodes have been generated, the result 

of the breath-first search is always the shortest path to a goal. The time consumed by the algorithm 

is proportional to the number of nodes generated, which is a function of the branching factor b 

and solution depth d, since each node can be generated in constant time. In other words, to find 

the nodes that are at the distance d from the root or start node (measured in number of edge 

traversals), BFS takes O (𝑏𝑑+1) time and memory.  

The huge memory required for BFS is the main disadvantage of the algorithm. The amount of 

consumed memory is proportional to the number of nodes stored, and the algorithm needs to 

store each level of the tree in order to generate the next level. As a result, BFS will exhaust the 

memory available quickly, and does not have many practical applications (Korf, Artificial 

intelligence search algorithms 2010). 
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Figure 6: Sequence of generated nodes by breadth-first search algorithm. 

3.3.1.2- Uniform-Cost Search 

 

In a graph, if all the edges have same costs, then breadth-first search generalizes to uniform-cost 

search. Uniform-cost search expands nodes based on their cost from the root or initial state as a 

replacement for their depth from it. At each step, the node with lowest cost g(n) will be expanded, 

where g(n) is the sum of the edge costs from the root to node n. The best data structure for keeping 

the nodes is a priority queue. This algorithm is analogous to Dijkstra’s shortest path algorithm. 

The main difference of the two algorithms is that uniform-cost search stops when a goal node is 

selected for expansion, while Dijkstra only stops the search when every node in a finite graph has 

been expanded. 

Every time a node is chosen to be expanded by uniform-cost search, a lowest-cost path to that 

node has been found. Time complexity of uniform-cost search is O (𝑏𝑐/𝑒), where c is the cost of an 

optimal solution, and e is the edge with minimum cost. The main disadvantage of uniform-cost 

search like breadth-first search is memory limitation. Since the algorithm stores each level of tree 

in order to generate the next level, the memory consumption is proportional to the number of 

stored nodes.    

 

 

3.3.1.3- Depth-First Search 

 

Similar to BFS, depth-first search (DFS) is an algorithm for traversing tree or graph data 

structures. DFS overcomes the space limitation of BFS by always generating next a child of the 

deepest unexpanded node (Figure 7). A list of unexpanded nodes is required for DFS, like BFS, 

however, in contrast to BFS that manages the list as a first-in first-out queue, DFS treats the list 

as a last-in first-out stack.  
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Figure 7: Sequence of generated nodes by depth-first search. 

 

The main advantage of depth-first search is that its memory requirement has linear relationship 

to the maximum of search depth, as opposed to exponential relationship of breadth-first search. 

That is because DFS only stores a stack of nodes on the path from the root to the current node. 

The time complexity of a depth-first search to depth d is O (𝑏𝑑). Therefore, DFS is time-limited 

rather than memory-limited. 

The main drawback of DFS is that it may not terminate on an infinite tree, but simply go down 

the left-most path forever. This is due to the usage of last-in-first-out stack, where the left most 

branch can be extended infinitely by generating an infinite number of duplicate nodes. The 

common solution for this problem is to impose a cutoff depth on the search. While the perfect 

cutoff is the depth of the solution d, this value is unknown in most of the advanced problems. 

Hence, if the selected cutoff depth is less than d, search will be unsuccessful, and no solution will 

be found, whereas if the cutoff depth is greater than d, execution time will be increased 

dramatically, and the first solution found may not be an optimal one (Korf, Artificial intelligence 

search algorithms 2010). 

 

 

3.3.2- Heuristic Search 

 

Solving more complex problems requires domain-specific knowledge to increase search 

efficiency. There are two definitions for heuristic search in artificial intelligence. First, in a general 



www.manaraa.com

28 | P a g e  
 

sense, the term heuristic is used for any effective advice that is not guaranteed to work in every 

case. Second, a more specialized technical meaning, which refers to the specific case of a heuristic 

evaluation function. 

 

 

3.3.3- Heuristic Evaluation Functions 

 

A heuristic evaluation function approximates the cost of an optimum route between a pair of 

states in a single-agent wayfinding problem. For a static destination state, a heuristic evaluation 

h(n) is a function of a node n that guesses the distance between node n and the destination state. 

For instance, in order to estimate the distance of a pair of locations on a highway, Euclidean or 

airline distance is used. Or Manhattan distance is the heuristic function for solving sliding-tile 

puzzles, which can be computed by counting the number of moves along the grid that are required 

to go from one tile to another and adding them together. 

The heuristic evaluation function must have two key characteristics. It must approximate the 

actual cost of each state change, and it has to be efficiently computable in constant time. For 

example, calculating Manhattan distance between two points is “constant time” similar to 

Euclidean distance, but calculating Manhattan distance between two states of a tiling puzzle is 

proportional to the number of tiles.  

Most heuristic functions solve a simplified version of the problem, then utilize the cost of an 

optimal solution of the simplified problem as a heuristic evaluation function for the original 

problem. For example, a simplified version of the highway problem removes the constraint of 

driving on roads and navigates instead from one location to another by helicopter; the cost of an 

optimal solution of this simplified version is the Euclidean distance. In the sliding-tile puzzles 

example, removing the constraint that a tile can only slide into the blank position will simplify the 

problem. The Manhattan distance is the optimal number of moves required to solve this simplified 

version of the problem. 

It is safe to say that such heuristics supply the lower bounds on the costs of optimum solutions to 

the original problem, because they result from simplification of the beginning problem. For 

instance, in the highway problem, the shortest possible path between two locations is the length 

of a straight line between them, which is the Euclidean distance between them. Similarly, the 



www.manaraa.com

29 | P a g e  
 

Manhattan distance is a lower bound on the actual number of necessary steps required to solve 

an instance of a sliding-tile puzzle, because all tiles must move at least as many times as its 

Manhattan distance to its goal position. 

 

        

3.3.4- Fundamental Pathfinding Algorithms 

 

Many algorithms utilize heuristic evaluations, like a pure heuristic search and the A* algorithm, 

which are the fundamental to most of the sophisticated heuristic search algorithms. There are also 

other basic search algorithms that use heuristic evaluation, like depth-first branch-and-bound, 

the heuristic path algorithm, recursive best-first search. This section provides more detailed 

explanation of the pure heuristic search algorithm and the A* algorithm. 

 

 

3.3.4.1- Pure Heuristic Search  

 

The pure heuristic search algorithm is the simplest heuristic algorithm; it expands nodes based 

on their heuristic value h(n) (Doran and Michie 1966). It maintains a closed list, which keeps 

nodes that have been expanded, and an open list of those nodes that have been generated but not 

expanded yet. At the beginning, the algorithm keeps the start node in the open list. At each step, 

the algorithm expands the node with lowest h(n) value in the open list, and generates all of its 

children, and inserts it into the closed list. After applying the heuristic function to the generated 

children, they will be placed inside the open list based on their heuristic value. This process will 

be continued until the destination node is chosen for expansion. 

The algorithm generates multiple paths to the same node in a graph with cycles and the first path 

found might not be the optimal one. The algorithm will discard the suboptimal path when it finds 

a shorter path. The main disadvantage of a pure heuristic search is that it is not guaranteed to find 

the optimal solution, because it does not take the cost of the path all the way to node n into the 

calculations.   
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3.3.4.2- A* Algorithm 

 

The A* algorithm is the basis of many modern pathfinding algorithms (the family of “*” 

algorithms) and the most well-knowns. It was developed by Hart, Nilsson, and Raphael in 1968 

(Hart, Nilsson and Raphael 1968). They combined features of uniform-cost search and pure 

heuristic search to find the optimal solution more efficiently. A* associates a cost function with a 

node. The cost function of node n is f(n) = g(n) + h(n), where g(n) is the cost of the path from the 

start node to node n, and h(n) is the heuristic approximation of the cost of traveling from node n 

to the goal node. At each step the node with lowest f value is selected to be expanded, and the 

previous node will be considered as parent of the current node. If the f values of several nodes are 

similar, the node with lowest h value will be chosen for expansion. This process continues until 

the destination node is chosen for expansion. Eventually, path generation occurs by recursively 

following the parent pointers from destination node to start node. 

A* finds an optimal path to the destination without overestimating the actual cost (h(n) must be 

admissible). For instance, the Euclidean distance never overvalues the real highway distance, and 

the Manhattan distance never overestimates the actual moves in the sliding-tile puzzles. By using 

these evaluation functions, A* can find the optimal solution to those problems (Hart, Nilsson and 

Raphael 1968). 

The main drawback of A*, like other best-first search algorithms, is the amount of memory 

required for the algorithm to operate, since the open and closed lists are stored in memory. A* is 

extremely space-limited in practice and will exhaust the available memory quickly. In addition, 

the process of managing the open and closed lists is computationally complicated and time 

consuming, which reduces the speed of A*. 

Accuracy of the heuristic function establishes the time complexity of a heuristic search algorithm. 

Therefore, A* operates on linear time if the heuristic evaluation function is an accurate estimator 

and expands only the nodes on an optimal solution path. Contrarily, A* operates similar to a 

brute-force uniform-cost search, and the time complexity becomes exponential if the heuristic 

function returns zero for every node. Generally, it is possible to reduce the effective depth of 

search by defining a good heuristic function (Korf, Reid and Edelkampz, Time complexity of 

iterative-deepening-A∗ 2001). 
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3.3.4.3- AP-Theta* Algorithm 

 

As mentioned before, the A* algorithm quickly finds paths that are constrained to the grid edges. 

However, these paths are not the optimum paths, because possible headings of the paths are 

artificially limited to multiples of 45 degrees (Figure 8) (Yap 2002). In addition, limited headings 

make generated routes unrealistic in appearance, which is not appropriate for simulating human’s 

pathfinding behavior (Figure 9). 

 

 

Figure 8: Limited headings of the generated path by A* algorithm. 
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Figure 9: Sub-optimal and unrealistic path generated by A* algorithm. 

 

In order to overcome A* algorithm’s drawbacks, any-angle path planning was introduced (Nash, 

et al. 2007). AP-Theta*, or Angle-Propagation Theta* is a variant of the A* algorithm that 

generates routes without limiting the headings by propagating information along grid edges (to 

achieve a short runtime). 

The AP-Theta* algorithm is built upon the A* algorithm; the main difference between them is that 

in AP-Theta* the parent of a node can be any vertex, in contrast to A* where the parent must be 

one of the eight neighbor nodes of the vertex. AP-Theta* calculates two extra values beside cost 

value g(n) and heuristic value h(n) for each node of the grid: a lower angle limit lb(n) and an upper 

angle limit ub(n). These two extra values create the angle range property of each node [lb(n), 

ub(n)]. Angle range property will be used to determine whether or not two nodes can be connected 

by line-of-sight.   

A simple analogy for a line-of-sight test between nodes is putting a lamp on top of a node. Light 

cannot pass through blocked cells, so all the nodes that are not located in the shadow of blocked 

cells have line-of-sight to the node under the lamp. It is possible to identify the nodes with line-

of-sight to the lamp-node using the angle range property of the lamp-node. Angle range is 

calculable using two light rays emitted from the lamp. Figure 10 illustrates line-of-sight test of 

node S. All the nodes in the yellow area defined by the angle range property [𝜃1, 𝜃2] have line-of-

sight to vertex S. The angle range of each node will be calculated and propagated along grid edges 
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at the time of expansion of the node by AP-Theta*. This process results in a constant runtime per 

node expansion, because both line-of-sight test and angle range propagation occur in constant 

time. 

 

 

Figure 10: Line-of-sight test of node S. 

   

As mentioned above, AP-Theta* calculates one additional property, named “angle range,” which 

consist of a lower angle bound and an upper angle bound for each node. This property is related 

to heading rays from the parent of node S to the node itself measured in degrees. A visible 

neighbor of node S has line-of-sight to node S if (but not necessarily only if) the angle between the 

ray from the parent of node S to the visible neighbor of node S, and the ray from the parent of 

node S to node S is contained in the angle range of node S. 

In order to define the angle range property of node S, it is required to define Θ (S, P, X), which 

gives the algorithm its name. If node P is the parent of node S and node X is its successor, Θ (S, P, 

X) indicates ∠ (S, P, X) which is limited to between 180° and -180°. This angle is positive if the ray 

from P to X is counterclockwise from the ray connecting P to S, and it is negative if the ray from 

P to X is clockwise from the ray connecting P to S. AP-Theta* constrains the angle range of each 

node before expanding it, based on the blocked cells adjacent to the node and successors of the 



www.manaraa.com

34 | P a g e  
 

node. Then the algorithm checks the following condition: for successor X of node S, if lb(S) ≤ Θ 

(S, P, S ́) ≤ ub(S) then X has line-of-sight to parent node of S. 

For example, in Figure 11 where A4 is parent node of C3, the lower bound of node C3 is 

∡(𝐵3, 𝐴4, 𝐶3) equal to -18° and upper bound of C3 is  ∡(𝐶4, 𝐴4, 𝐶3) equal to 27°. Therefore, all the 

neighbors of C3 that pass the line-of-sight condition are guaranteed to have line-of-sight to parent 

of C3 which is A4. 

 

 

Figure 11: Maintaining angle range of node S. 

 

Figure 12 illustrates the paths generated by both Theta* and A* algorithms from node A4 to node 

C1. Since in A* algorithm parents and successors have to be neighbors, the sequence of parent and 

successor nodes in the generated path, which is shown by red line from goal node to start node is: 

C1C2B3A4. On the other hand, Theta* maintains the angle range of each node before 

expansion. In the generated path by Theta*, which is illustrated by the blue line, node B3, which 

is the parent of node C2 has line-of-sight to node C1, so it will be assigned as the parent node of 

C1. Consequently, the sequence of parent and successor nodes in the generated path by Theta* is: 

C1B3A4. Comparing routes generated in this simple example indicates that, not only is the 

route generated by Theta* shorter than the one generated by A*, but also it is more realistic 

looking. 
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Figure 12: Generated path by Theta* (blue), and A* (red). 

 

 

3.4- Indoor Localization  

 

Tracking a user’s location with high precision in urban and indoor environments has a variety of 

applications in the healthcare, logistics, and entertainment industries since GPS service can be 

either blocked or adversely affected by multipath propagation in such environments. 

A variety of methods has been proposed for providing functional pedestrian tracking services with 

less than a few meters error by utilizing various technologies as mentioned previously. This 

chapter provides more detailed explanations about the method used in this research to track a 

user’s location and movements dynamically. 

 

 

3.4.1- Dead Reckoning 

 

The term “dead reckoning” (DR) describes a position solution that is gained by calculating 

movements from a known starting point based on the motion of the user. It was originally a simple 
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navigation method that served European mariners for centuries. Starting at a known or assumed 

position, they tracked three parameters utilizing simple but reliable instruments: 

• The ship’s compass heading. 

• The speed of the ship. 

• The time spent on each heading and at each speed.  

The navigators were able to calculate the route and distance the ship had moved and mark a sea 

chart, if he had one. This method was used by Columbus and most other mariners of the Age of 

Exploration (Reckoning 2018). 

A simple device for use in pedestrian dead reckoning (PDR) is the pedometer, which usually is an 

electronic device that counts the number of steps that the user takes by detecting the motion of 

person’s hand or hips. It can be used to calculate distance but not direction. 

The ubiquity of accurate and cheap sensors, including the accelerometers, gyroscopes, and 

magnetometers found in smartphones these days, has reinvigorated interest in DR for pedestrian 

navigation in environments where other navigation systems are unavailable.  

  

 

3.4.1.1- Accelerometer 

 

An accelerometer is an instrument capable of measuring the proper or physical acceleration 

experienced by an object (Tinder 2007). Proper acceleration is the velocity change rate of a body 

in its instantaneous rest frame (Rindler 2013), and it is different from coordinate acceleration, 

which is acceleration in a static coordinate system. A static accelerometer on the Earth’s surface 

will show approximately 9.81 m/𝑠2 upward since any point on the earth surface is accelerating 

upwards relative to the local inertial frame (due to gravity). Theoretically, an accelerometer is a 

damped mass on one or more springs. When the system experiences an acceleration, the mass 

pushes on a calibrated spring to the extent that the spring can accelerate the mass at the same rate 

as the initial acceleration (Figure 13). The dislocation of the mass is then measured to calculate 

the acceleration. Modern accelerometers are often small micro electro-mechanical systems 

(MEMS) that consist of little more than a cantilever beam with a proof mass (seismic mass). 
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Sensors incorporating three such devices oriented at right-angles to each other are able to 

measure acceleration in all three spatial directions at the same time. 

 

 

Figure 13: Schematic structure of accelerometer. 

 

 

3.4.1.2- Magnetometer 

 

Magnetometer is a device capable of measuring the strength (in unite of Gauss) and direction of 

the local magnetic field. The simplest type of magnetometer is the traditional compass (Figure 14) 

consisting of a magnetized needle, which changes orientation based on the earth’s magnetic field 

and shows the direction of the field.  
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Figure 14: Traditional compass (Mizaralkora 2017). 

 

Since electronic magnetometers have become extremely cheap, most modern smartphones 

contain a Tri-axis electronic magnetometer, which measures the strength of the magnetic field 

and acts as a compass (Magnetometer 2018). The sensor uses the Earth’s magnetic field as a 

reference to discover the phone’s orientation along x-, y-, and z-axes. Fortunately, Tri-axis 

magnetometers are not affected by orientation or elevation. “Otherwise users would have to hold 

the phone precisely parallel to the ground or in some other position that may not correspond to 

how they normally use it,” according to Mark Laich, vice president of worldwide sales at Memsic, 

a maker of electronic compasses based in Andover, Massachusetts (Jones 2010). 

 

 

3.4.1.3- Gyroscope 

 

A gyroscope measures and maintains orientation and angular velocity. It consists of a wheel or 

disc that spins while the rotation axis is free to assume any orientation (Figure 15). During 
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rotation, the rotation axis is not affected by sloping or rotation of the mounting because of the 

conservation of angular momentum (Worthington 1906).  Due to their precision, gyroscopes have 

a variety of applications in science and practice. For instance, they are included in the inertial 

navigation system of Hubble telescope. Also, it is possible to build gyrocompasses, which can be 

added to, or replace magnetic compasses in transportation vehicles as part of an inertial guidance 

system. Gyroscopes have captured the attention of many designers who have integrated them into 

modern technologies like smartphones, game consoles, and virtual reality sets in the last decade, 

since they provide the possibility of calculating orientation and rotation (Gyroscope 2018). 

 

 

Figure 15: Gyroscope schematic structure (Gyroscope 2018). 

 

It is possible to utilize a gyroscope as a heading indicator. This type of gyroscope is called a 

directional gyroscope. It has a horizontally set axis of rotation, pointing north instead of seeking 

north similar to magnetic compass. Their main drawback is that, when being used, it slowly drifts 

away from north, and it is required to use a magnetic compass to reorient them periodically 

(Feynman, Gottlieb and Leighton 2013). 
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4- Methodology 
 

These days, computational and algorithmic tools are being used to improve various aspects of 

architecture design by simulating real world events before their occurrence using the digital world 

of computers. The results of these simulations not only demonstrate how the building will perform 

after construction, but also provide insights about the effect of various design changes on the 

performance of the building. The only other way for accessing such information is by empirical 

experiments, which are extremely costly, and their results might not repeat on future scenarios. 

For instance, architecture firms are using daylight simulation programs like Diva or Insight360 

to evaluate the performance of their designs based on the amount of natural daylight it receives. 

Circulation design, as one of the most important aspects of architecture design process, can 

benefit from these digital simulation tools since inappropriate and complex circulation design 

may affect functionality of the building on various levels and buildings with proper circulation 

improve the human experience inside the space. For instance, in a well-designed building, 

individuals would spend less time interpreting the direction information shown by graphical signs 

or given by staff inside a building, eliminating some of the efficiency problems of the building. In 

addition, suitable circulation design may affect the level of congestion, which is one of the most 

important occupant-level spatial qualities inside the space. While appropriate circulation design 

may cause serendipitous congestion in some building layouts, unsuitable circulation may cause 

discomfort sensation for occupants of other building layouts. Apart from that, individuals, 

especially the ones with sensory impairments tend not to attend buildings with complex 

circulation, since they get the fearsome sensation of being lost in those settings. Furthermore, 

occupant safety of a building is extremely affected by the wayfinding design of that building. Not 

only it is much more problematic for occupants to evacuate buildings with complicated circulation 

during emergency situations, but first responders have a harder time providing their services in 

those buildings. Moreover, analyzing and evaluating designed floorplan of a building based on the 

codes and standards related to circulation, accessibility, and safety provide important insights 

and information for designers and building owners who pursue Living Building Certification. 

However, digital tools that simulate human behavior and human experience inside the built 

environment are extremely rare and expensive. FlexSim for example, is a very sophisticated 

simulation tool that costs tens of thousands of dollars per year.  



www.manaraa.com

41 | P a g e  
 

Beside all the benefits that digital tools might provide for circulation and wayfinding design 

during architecture design process, they also may improve utilization of the existing buildings 

with complex circulation by providing navigation assistance for the occupants similar to outdoor 

PNS. However, due to challenges in the way of developing digital indoor navigation assistance, 

like unavailability of GPS signals inside buildings, absence of appropriate maps, which designate 

the position of the obstacles, routes, walls, plus destination inside a building, and complexity of 

indoor environment and freedom of individuals’ motion inside the building, indoor pedestrian 

navigation systems have not been developed adequately.    

In order to improve circulation design process of a building and provide insights about human 

wayfinding behavior, which is one of the goals of this research, an open source toolkit for the 

Rhino/Grasshopper platform was developed based on heuristic search algorithm (AP-Theta*). In 

addition, an IOS smartphone application was developed utilizing the same algorithm to provide 

indoor navigation assistance for users of complex buildings. 

 

 

4.1- Workflow 

 

The strategy taken for developing the toolkit in this research required choosing a workflow for 

connecting the regular architectural design documents of a building to the analysis toolkit, since 

different firms use various methods and software programs in their design process. Apart from 

that, it was decided that toolkit must be as easy as possible to use by automating most of the 

process. 

Although architecture firms have various workflows in design process, most of them use Revit, a 

BIM software developed by Autodesk for developing their design after concept development stage 

of the design. In addition, BIM models contain more information (semantic) related to the design 

than CAD drawings which usually only contain geometrical information of the design. Therefore, 

Revit was chosen as the starting point of the workflow, meaning that designed floor plans will be 

extracted from Revit model for analyzing and evaluating.  

On the other hand, Rhino is a popular software for analyzing and evaluating various aspects of 

the architectural design, since geometrical manipulations are easy in Rhino environment. Apart 
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from that, the existence of Grasshopper, which is a visual programming environment in Rhino, 

provides the possibility for developing various analysis tools that are directly involved with the 

geometry and information of the design. Consequently, Rhino\Grasshopper platform was 

selected as the end-point of the workflow, meaning that wayfinding package will be developed as 

Grasshopper plugin and circulation analysis prototypes will be developed in Rhino\Grasshopper 

environment. On the other hand, iOS was chosen as the final platform for developing the indoor 

pedestrian navigation system. 

 

 

4.1.1- Data Transfer  

 

The fundamental requirement for developing the wayfinding package on a floorplan is identifying 

the walkable spaces of the floorplan. Fortunately, this information is part of almost every 

professionally made Revit model. Room-Data is a property of each space in each floor of the 

model in Revit, which highlights the boundaries of different spaces in Revit. Figure 16 presents a 

floorplan in Revit that contains Room-Data for all the walkable spaces of that specific floor with 

distinct colors. Therefore, the main requirement of data transformation process on the Revit side, 

is to transfer Room-Data along with the reset of the floorplan. 
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Figure 16: Room-Data in Revit floorplan. 

 

It is possible to export data from Revit in many different formats. For example, FBX is the format 

that captures geometry, material, and organization of objects (layers) more completely than other 

formats. Accordingly, it is the best format for transferring 3D models between Revit and other 

modeling software, specifically other Autodesk products. However, FBX is not a decent format for 

transforming 2D information of a floorplan, since Room-Data is not included in it. In contrast to 

FBX, DWG and DXF are the formats that capture most of the 2D information, like room data, or 

material hatches in plan, but they operate poorly in transferring 3D information. 

Since the wayfinding package requires a data-rich 2D floorplan, which contains information 

related to the position of the walls, furniture, and room-data, DWG was selected as the transfer 

format for this project. Figure 17 illustrates the floorplan of Figure 16 in Rhino environment after 

transferring from Revit as DWG format. In this transfer Revit encodes Room-Data as a hatched 

polygon object that, as Figure 17 shows, includes the full floor area, ignoring the location of 

furniture and other objects (cabinets, sink, toilet, etc.) that would actually reduce the walkable 

floor area.  
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Figure 17: Room-Data in Rhino as Hatch object. 

 

 

4.2- Extracting the Navigation Model 

 

As mentioned before, most of the top heuristic pathfinding algorithms require a navigation grid 

to operate on, consisting of nodes that represent locations and edges that connect the location 

nodes inside the space together. The navigation grid, which is called navigation model in the 

literature must discriminate walkable space from obstacles in any landscape (outdoor, indoor, or 

other planet). Therefore, there are two types of nodes in the navigation model: 

1- Location nodes, which are walkable. 

2- Wall nodes, which are unwalkable.  
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Consequently, the first step in developing the floorplan pathfinding package is the generation of 

the navigation model on top of the floorplan in the Rhino environment. In addition, the model 

generation process must be as automatic as possible to be useful, since generating the model 

manually on top of large floorplans is extremely tedious and time consuming. 

Considering all the required features of the navigation model, a Grasshopper script was designed 

to generate the model on top of any floorplan that contains Room-Data in Rhino as Hatch object. 

The script is composed of several 2D geometrical operations that will be demonstrated one by 

one. 

Step 1: importing Room-Data into Grasshopper. The only manual operation of the 

navigation model generation process is transferring Hatch object to Grasshopper. Unfortunately, 

Hatch objects are not recognized by Grasshopper. Thus, they must be converted into another 

geometry type. As Figure 18 shows, Rhino changes a Hatch object to an identical Brep (boundary 

representation) to the initial Hatch if user explodes the Hatch. Since Brep is a data type recognized 

by Grasshopper, the first step of navigation model generation is to change hatches representing 

the Room-Data to Brep by exploding them and import the Breps into Grasshopper.    

 

 

Figure 18: Changing hatch to Brep by explode operation in Rhino. 

 

Step 2: Generating the context. Once the Breps were imported into Grasshopper, it is 

required to generate the context of the navigation model. Context model is a square surface that 

covers all the Breps. Simply put, it is the bounding box of all the Breps, which was scaled in the 
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direction of the shorter edge to become a square with edges length equal to longer edge length of 

bounding box (Figure 19). 

 

 

Figure 19: Process of generating Context of the navigation model. 

 

Step 3: Raw-grid generation. The second geometrical operation in creating the navigation 

model is generating the navigation grid inside the context model. Grid size must be selected based 

on the complexity of the floorplan. For instance, complex floorplans with many furniture items in 

them require smaller grid size than free floorplans with no furniture in them. The recommended 

range for grid size is between 8” to 24”, since human cannot pass bottlenecks narrower than 8’ 

and grid cells bigger than 24” will make the navigation model excessively abstract (Figure 20). A 

two-dimensional matrix was utilized for storing the grid cells.  
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Figure 20: 8” raw-navigation grid inside the context model. 

 

Step 4: Discriminating the search area. To discriminate grid cells that are walkable from 

the unwalkable ones and wall-cells, a test was designed for each of the cells. First, every edge of 

each cell was divided to 7 equal segments by 8 points. Simply put, each cell now contains 32 points 

equally distributed on its four edges. Next, the distance between each one of these 32 points and 

their closest points on each Brep was calculated and added together. This operation will provide 

one number for each cell. If the number is equal to zero, then all 32 points of the cell are 

guaranteed to be located on top of at least one Brep, which means that cell is walkable and part of 

the search area. If the number is bigger than zero, then at least one of the 32 points of the cell is 

outside the walkable area, so the cell is considered as unwalkable (a wall-cell). This method 

distinguishes not only walkable cells and wall-cells, but also creates a buffer about the size of one 

cell around walls and obstacles, which makes the navigation model more realistic, since it is 

unlikely that people will walk clinging to the walls or furniture inside a space.  Eventually, results 

of the test for each cell was stored as zeros and ones (one for wall-cells and zero for walkable cells) 

in a two-dimensional matrix associated with the position of that cell in the matrix of the cells. 

Figure 21 illustrates the final navigation model generated in Grasshopper. Walkable cells are 
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illustrated in green while wall-cells are shown in orange and red. Orange cells are the offset cells 

around walls and furniture, which like red cells are not walkable. 

 

 

Figure 21: Final navigation model. Zeros illustrates walkable cells (Search area) and ones illustrates wall-cells. 

 

 

4.3- Data Structure and Methods 

 

In order to develop the pathfinding package, I decided to use C# programming language, which 

proved to be most effective, since Grasshopper has been developed with this language. Therefore, 
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Microsoft Visual Studio 2015 was used as the programming platform for developing the 

wayfinding package for Grasshopper. 

 

 

4.3.1- Data Structure 

 

Since C# is an object-oriented programming language, the wayfinding package uses an object-

oriented format. Object-oriented programing or OOP is a programming model based on the 

concept of objects, which may contain data in the form of attributes, and code in the form of 

procedures or methods. In OOP, computer programs are designed based on instances of defined 

objects that interact with one another. 

Since the AP-Theta* algorithm discriminates nodes from cells and uses them separately to 

calculate the angle range for each node. Two types of objects for storing the whole navigation 

model:  

1- Spot object type. 

2- Cell object type. 

 Although each of these data objects has its own attributes and methods, they are also interwoven, 

since one of the attributes of the Spot object is a list of adjacent Cell objects. Similarly, one of a 

Cell object’s attributes is a list of Spot objects representing the four corner Spots of the Cell. 

 

 

4.3.1.1- Spot Object Attributes 

 

The Spot object was designed to store and represent nodes of the navigation model. Therefore, its 

attributes and methods were defined based on the requirement of AP-Theta* algorithm. 

Spot objects have to be comparable, since AP-Theta* needs to compare each Spot instance to 

another one based on the heuristic value or h(n) of each. Thus, the “IComparable” interface, which 

allows object to be compared or sorted based on a value was implemented into the Spot data type. 
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All the Spot object’s attributes are mentioned below: 

id: An array with two empty slots, in which the algorithm stores the column and row indices of 

the Spot instance in the initial matrix. For instance, the id of the second Spot object in the third 

row is [1, 2] (Figure 22).  

  

 

Figure 22: id attributes of Spots. 

 

name: A string representing name of each spot of the navigation model. This attribute is empty 

by default.  

pos: A Point3d object representing the (x,y,z) coordinates of the Spot object on the Cartesian 

system. 

cellSize: A double? precision number representing the distance between each Spot instance, 

which is equal to the size of the cells in the navigation model. 

lb: A precision number presenting the lower angle bound attribute of each Spot instance in 

degree. This attribute is required by the pathfinding algorithm to evaluate the line-of-sight range 

of the Spot. 
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ub: A precision number presenting the upper angle bound attribute of each Spot instance in 

degree. This attribute is required by the pathfinding algorithm to evaluate the line-of-sight range 

of the Spot. 

los: A Boolean representing the Line-of-sight attribute of the spot relative to it’s ‘parent’ spot. If 

a Spot has line-of-sight to its parent, this attribute is true; otherwise, it is false. At the beginning 

of the algorithm all the model’s Spots have true as their los value. 

closedSet: A Boolean that shows if the spot was expanded before or not. 

f: A number representing the total cost function of the Spot. 

g: A number representing the cost of going from the start Spot to this Spot. 

h: A number representing the heuristic guess value of the Spot (the estimated cost of going from 

this Spot to the destination Spot). 

parent: A property of Spot object for storing another Spot object as parent of each node. 

neighbors: Spot ids of the eight (cardinal and diagonal) neighboring Spots of the current Spot 

(Figure 23). 

 

 

Figure 23:Neighbors attribute of a Spot. 

 

adjCells: A list of Cell data types where the algorithm stores the four neighbor Cells of the Spot 

(Figure 24). 
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Figure 24: Adjacent Cells of a Spot. 

 

 

4.3.1.2- Spot Object Methods 

 

Construction Method: All objects require a construction method to be instantiable. A Spot 

object’s construction method requires three inputs:  

1- A two-slot array of numbers related to the location of the spot in the Cartesian system. The 

construction method stores this array in the “pos” attribute of the Spot object (Spots are always 

at Z=0). 

2- A two-slot array of numbers related to the id of the Spot in the initial matrix of Spots. This array 

will be stored in id attribute of the Spot by construction method.  

3- A precision number, which is related to the cell size of the navigation model. The construction 

method stores this value in the “cellSize” attribute of the Spot object. 

getNeighbors Method: This method has been designed to find all eight neighbors of each Spot 

in the navigation model and store them in the “neighbors” attribute of that Spot. 

CompareTo Method: This method gets one Spot object other than the current Spot object and 

compares the current Spot’s f attribute with the f attribute of the other Spot. Eventually, it returns 

(0) if two Spots have the same f value, (1) if the current Spot has a bigger f attribute, and (-1) if the 
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current Spot has a smaller f value. It is possible to sort a list of Spots based on their f attributes 

using this method or to store them in a priority queue data structure. 

 

 

4.3.1.3- Cell Object Attributes 

 

The Cell object was designed to store and represent Cells of the navigation model. Therefore, its 

attributes and methods were defined based on the requirement of AP-Theta* algorithm. 

All the Spot object’s attributes are mentioned below: 

wall: An integer that represents if the Cell is an obstacle or not. Obstacle Cells have (1) as their 

wall attribute, while walkable Cells’ wall attribute is equal to (0). 

cornerSpots: An array of Spots with four slots, in which the algorithm stores Spots located on 

the corner of the Cell (Figure 25). 

 

 

Figure 25: Spots located on the corners of a Cell object. 
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4.3.1.4- Cell Object Methods 

 

Construction Method: The construction method of the Cell objects requires two inputs: 

1- A precision number, which is related to cell size of the navigation model. This value will be used 

only for visualizing the Cell. 

2- An integer that defines the wall attribute of the Cell. The construction method stores this value 

in the wall attribute of the Cell. 

display Method: This method visualizes the Cell object in the Rhino viewport. The method 

extracts the four stored Spots from the “cornerSpot” attribute of the Cell and draws a shape in the 

Rhino viewport: an empty rectangle if the wall attribute is (0) or a colored rectangular surface if 

the wall attribute is (1). 

 

 

4.3.2- Methods 

 

This section introduces and explains methods that were developed specifically for this project. 

Other methods are similar to the ones explained in the original AP-Theta* (Nash, et al. 2007). 

 

 

4.3.2.1- Theta 

 

This method was designed to get three Spots and calculate the angle between them. The angle 

then will be used by the AP-Theta* algorithm to define the angle range of the Spots or evaluates if 

a Spot has line-of-sight to another Spot.  

If S1, S2, and S3 are three input points in a sequence, then the method needs to calculate four 

values before calculating the angle between three spots: 

1- DP: Dot-product of the vector from S2 to S1 and the vector from S2 to S3. 
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2- Z: Z value of the cross-product of the vector from S2 to S1 and the vector from S2 to S3. 

3- M1: Magnitude of the vector between S2 and S1. 

4- M2: Magnitude of the vector between S2 and S3. 

If Z is positive, then the method returns: 

Acos (DP / (M1 * M2)) * (180 / PI) 

If the Z is negative, then the method returns: 

Acos (DP / M1 * M2)) * (-180 / PI) 

 

 

4.3.2.2- Build Path 

 

The “Build Path” method was designed to build a sequence of Spots that are on the shortest path 

found by the algorithm. The Shortest path will be generated by connecting these Spots together. 

It requires three inputs: 

1- An empty list of Spots. 

2-The Goal Spot. 

3- The Start Spot. 

First the method stores the Goal Spot into the empty list, then recursively stores parents of each 

Spot into the list starting from the Goal Spot until it reaches the Start Spot. Eventually, it returns 

the list, which is now filled with the sequence of Spots from The Goal Spot to the Start Spot. The 

route or path can be visualized in plan by drawing over the original CAD/BIM data. The path is 

simply produced by connecting the Spots with a polyline. 

It is worth mentioning here that, in order to evaluate results of the algorithm, several test 

prototypes were generated in Processing programming language. After making sure that all parts 

of the algorithm work as intended, it was rewritten in C# for Circulation toolkit and in Swift 4 for 

indoor PNS. The test prototypes are available in Code appendix of the project.  
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4.4- Congestion Analysis prototype 

 

Congestion is one human-level spatial quality of the interior space, which is directly related to 

circulation design of the building. In work environments, congestion can have a positive effect on 

human experience and improve performance of the workplace by activating the space and creating 

productive interaction between employees. On the other hand, in some public buildings like 

courtyards or malls, being informed about the locations within the space with a high chance of 

congestion helps architects and interior designers to decide on the position of certain amenities 

and security features. For instance, architects can improve positioning security or information 

centers in courtyards or locate amenities, small vendors and cafe shops utilizing information 

about highly congested places in the designed floorplan. Therefore, the purpose of the first 

prototype developed in this work is to identify the locations with a high chance of congestion 

inside a given floorplan by calculating the routes between locations defined by the architect and 

measuring the density of routes inside the space as discussed in (Nagy, et al. 2017).  

All the analysis results provided in this section are about the floorplan of Architecture Hall 

building at the University of Washington, and a Grasshopper plugin called Mouse which was 

developed by the author is used in the analysis prototype (Figure 26). 
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Figure 26: Architecture Hall first floor. 

 

 

4.4.1- Navigation Model (MouseTrap) 

 

After importing the floorplan that contains Room Data from Revit to Rhino and changing the 

hatch objects representing the Room Data, the first step is to generate the navigation model using 

the Room Data of the floorplan. This can be done using the MouseTrap component of the Mouse 

plugin. Required inputs of this component are: number of subdivisions of the navigation model’s 

grid cells, which will be used for discriminating walkable-cells from wall-cells, Breps representing 

the Room Data of the floorplan, and the cell-size of the navigation model (Figure 27). 
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Figure 27: Architecture Hall navigation model generated by MouseTrap component. 

 

The cell-size must be in the same units as the Rhino model. For instance, if the model is in the 

metric system, cell-size must be defined in the metric system too. 

Since zones of the floorplan with higher chance of congestion are the ones that occupants of 

distinct parts of the building pass through to access other parts regularly, the metric defined for 

measuring the level of congestion in this prototype is density of routes inside a portion of the 

floorplan. 

 

 

4.4.2- Super Cells 

 

The first step for measuring route density was to define a grid with super cells on top of the plan. 

Since these cells are larger than the navigation model’s cells, they are called super cells in this 

work. The main reason behind this step is that, congestion occurs between people when they pass 

within a certain distance of each other. In other words, if two individuals pass each other when 
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they have for example less than 3 meters distance, it is safe to say that congestion occurs between 

them, but if they pass each other while they have more than 5 meters distance from one another, 

no congestion happens between them. To the best of my knowledge, no research has been done 

for measuring the maximum distance between people when congestion occurs. Apart from that, 

congestion’s maximum distance depends on functionality of the space and it changes in various 

projects. Therefore, it was considered as an input for the analysis tool, which the architect defines.   

Therefore a 9 𝑚2  grid was generated on top of Architecture Hall example. Since areas of the 

walkable parts of the plan located in each of the super cells are different, the number of cells from 

the navigation model’s walkable cells in each super cell determines the area used in measuring 

the route density in the super cell (Figure 28). This effectively ignores portions of the super cell 

extending outside the building.    

 

 

Figure 28: Super cells colored in red on top of the navigation model. 
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4.4.3- Start and Destination Points 

 

Next, it is required to define start points and destination points for occupants of the building, as 

these become paths. This can be easily done by identifying initial locations of the occupants and 

all the possible places that they would go. For example, all the work stations on the first floor of 

Architecture Hall are considered as start points, since professors and students use them during a 

regular day. They are also parts of the destination points too, because it is fairly common for 

students to go visit their professors in their offices, or professors regularly go to their colleagues’ 

offices for meetings. In addition, existing doors, stairs, elevators, and bath rooms are all feasible 

start points and destination points. In Figure 29, green circles represent occupants of Architecture 

Hall’s first floor. Although all the work stations and classroom/auditorium seats are not occupied 

regularly, it is essential to identify all of them to the congestion analysis tool, since it will make 

results of the analysis more accurate. 

 

 

Figure 29: Possible start points and destination points in the floorplan. 
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4.4.4- AP-Theta* Solver (Mouse) 

 

The second component of the Mouse plugin is an AP-Theta* solver called Mouse. Generating the 

data structure required for the algorithm, and execution of the algorithm itself will happen in this 

component. Thus, it will calculate the shortest walking distance between all the points defined as 

start locations and destinations and represent them as Polylines in Grasshopper. Apart from start 

and destination points, context, and wall-data of the navigation model, which are outputs of the 

MouseTrap component, plus the cell size used in generating the navigation model are required 

inputs of Mouse component. Figure 30 illustrates all the 23,350 possible routes in the 

Architecture Hall floorplan based on the position of the occupants and their possible destinations 

from Figure 29. In other words, if an occupant decides to go to each of the destination points, the 

path he or she would take is extremely similar to one of the paths generated by the Mouse 

component. 

 

 

Figure 30: All the possible routes, generated between start and destination points 
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4.4.5- Route Density and Data Interpretation 

 

As mentioned previously, the metric defined for identifying locations with a high chance of 

congestion is the density of routes in super cells. Route density in each of the super cells can be 

calculated as a function of the number of routes that pass through each super cell, and the area of 

walkable parts of the floorplan located in each super cell, as expressed in the following equation, 

where D represents density of routes, R is number of routes in each super cell, N is number of 

walkable navigation cells in super cell, and S is cell-size of the navigation model. 

 

𝑫 =  
𝑹

𝑵 ∗ 𝑺𝟐
 

 

In order to visualize the highly congested locations on the floor plan, a heat-map was generated 

on top of super cells’ grid based on the route density of each super cell. A color in the range from 

dark blue to bright red was selected for each supper cell, such that the super cell with highest 

density value will be illustrated as red and the super cell with the lowest value will be illustrated 

as blue. Figure 31 demonstrates the congestion heat map of the first floor of Architecture Hall, 

and Figure 32 illustrates the number of routes, plus walkable areas in highly congested super cells 

around the core of the building. 
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Figure 31: Heat map demonstrating congestion chance on a floorplan. 

 

 

Figure 32: Walkable area in each (A) and number of routes (B) in super cells around the core. 
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Comparing the results of the analysis with what students and faculty experience during a regular 

day in the first floor of the building indicates that the results are fairly close to reality, especially 

during class changes. For instance, the areas around the core of the building are extremely 

congested locations from the morning until noon when all the classes are operating. In addition, 

the super cells that contain the stairs are highly congested locations too, since individuals need to 

use them in order to access the building’s rest rooms. Therefore, clearly these results could provide 

some insights about the quality of the circulation design for the architects during the design 

process of the building.       

 

 

4.5- Emergency Evacuation Prototype 

 

Emergency evacuation is another situation which is extremely sensitive to the circulation design 

of the building. While complicated and inappropriate circulation design might increase casualties 

during a disaster, proper circulation design might save lives and reduce confusion during a 

catastrophe. Therefore, many regulations and rules related to emergency evacuation of a building 

are provided in building codes. However, rules related to congestion and traffic during egress, 

which can be more dangerous than the disaster itself in some scenarios, are missing in building 

codes (Canter 1980). 

Literature related to emergency egress indicates that the most crucial parameter during 

evacuation of a building is time, which is affected by occupants’ uncertainty on deciding which 

exit path to take, length of the route to exits, and congestion during an evacuation (Canter 1980). 

The circulation design of the building has a direct impact on all these parameters. Hence, the 

purpose of the second circulation analysis prototype developed in this research is to provide 

insights for architects during the design process related to evacuation time, and congested areas 

of the floor plan during emergency egress. As with the first prototype, the analysis in this section 

was done on Architecture Hall’s first floorplan.  

The first step in developing an emergency evacuation analysis tool was to design a new metric for 

identifying locations in the floorplan with a high chance of congestion, because density of routes 

is not a proper metric for this purpose. This is due to the fact that, no congestion in locations with 

high density of routes would occur during egress if people pass through them in various times. 
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Similarly, locations with lower density of routes might be highly congested locations during egress 

if many individuals pass them at the same time. Therefore, the highest density of bodies that 

occupy each super cell at the same time during the total egress process was chosen as a congestion 

measurement in this prototype. The equation below was used for calculating body density in each 

super cell. D represents highest density of bodies that attend each super cell at each time during 

the egress process, H is the highest number of bodies present at the same time in each super cell 

during the evacuation process, N is number of walkable navigation cells in each super cell, and S 

is cell-size of the navigation model. 

 

𝑫 =  
𝑯

𝑵 ∗ 𝑺𝟐
 

 

In order to calculate the density of bodies in each super cell, it was required to simulate a complete 

emergency evacuation process on the floorplan.  

 

   

4.5.1- Start Points and Destinations 

 

In contrast to the first prototype in which defined start and destination points were one set of 

points and routes between all of them were required for the analysis, start points and destination 

points in the emergency evacuation prototype have to be distinct sets of points. All the possible 

locations of individuals in the floorplan, like work stations and offices, are start points, and all the 

exit doors are destination points during emergency egress. Figure 33 demonstrates defined start 

and destination points in the Architecture Hall example. 
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Figure 33: Start points (circles) and exit doors (squares) for emergency egress. 

 

 

4.5.2- Route Generation 

 

After defining start and destination points, the shortest paths to the exit door closest to each 

individual had to be generated. In order to do that, shortest paths between each start point and 

all the available exit doors were generated, and the shortest path was selected for each start point. 

The closest exit door for each occupant was found based on the shortest realistic walk between 

doors and occupants instead of Euclidean distance between them. Figure 34 illustrates the 

calculated shortest path between each occupant and the closest exist to him/her. 
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Figure 34: Shortest paths to closest exits for each occupant. 

 

 

4.5.3- Body Density and Data Interpretation 

 

As mentioned before, the body density in each super cell is equal to highest number bodies in each 

super cell divided by the walkable area of floorplan located in that super cell. The size of the super 

cells in this analysis was reduced to 4 𝑚2, since congestion during emergency egress occurs in 

smaller areas than regular congestion.  To calculate the highest number of bodies that a super cell 

ever experiences during the evacuation, the entire process has to be simulated. In other words, all 

the individuals must start evacuating the building at the same time using the paths to the closest 

exits, which were generated by the AP-Theta* solver for them. The simulation also requires 
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specialized human travel speed data during evacuation. Much research has been done on 

measuring human’s travel speed on distinct types of surfaces (horizontal, incline, etc.). Several 

factors influence a person’s movement speed, like age, gender, grouping (family, friends, etc.), 

physical ability, and environmental conditions. However, based on the experimental travel speed 

data base provided in (Fahy and Proulx 2001) human movement speed during emergency egress 

inside public buildings (theaters and educational buildings) are between 0.33 𝑚/𝑠 and 2.33 𝑚/𝑠. 

Hence, 1.33 𝑚/𝑠 was selected as the average speed of occupants in the Architecture Hall example. 

When the simulation starts, occupants begin to move to the closest exit at the same time with the 

defined travel speed. While time continues to run, bodies move from one super cell to another 

until they reach their exits. Therefore, the number of bodies in each super cell changes. At each 

second, the algorithm computes the number of bodies in each super cell. This is compared to the 

maximum that super cell has seen and stored if larger. The highest numbers will always be stored 

and replace the lower numbers. The moment the last occupant reaches an exit, time will stop, and 

the density of bodies in each cell will be calculated. For visualization purposes, an upper limit was 

defined for the body density of each cell. In other words, cells with density higher than the upper 

limit will be illustrated as red, while a color between red and dark blue will be selected for the rest 

of the super cells. For instance, the upper limit selected for Architecture Hall example is 5 bodies 

in a super cell (4 𝑚2) as illustrated in Figure 35.. Furthermore, Figure 36 demonstrates the 

number of walkable navigation model cells, as well as the highest number of bodies that each 

super cell around the core of the building experienced during the whole simulation.  

It is worth mentioning here that, the value for heatmap’s upper limit, and size of the super cells 

are inputs for the analysis tool, which will be defined by the architect based on the functionality 

of the project. 
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Figure 35: Heat map illustrating the congested locations of the floorplan during the egress process. 

 

 

Figure 36: Number of walkable navigation model cells (A) and highest number of bodies (B) in super cells around 
the core. 
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Associating the heat map generated by the analysis prototype with what may happen in an actual 

emergency evacuation scenario indicates that the results of the analysis are believable, since most 

of the red areas are locations with limited walkable area close to crowded locations of the 

floorplan. For example, most of the inner doors of the space are colored as red since they have 

constrained space around them and many people arrive to those areas at the same time, also the 

locations between the seats of the amphitheater are extremely congested locations in real world 

which was identified by the algorithm. Tools like the emergency evacuation analysis prototype in 

this project may provide useful information about emergency evacuation of a building and identify 

dangerous locations during emergency egress. 

 

 

4.6- Personal Navigation Assistant 

 

People avoid going to places that they feel they will get lost. This is similar to an actual barrier that 

stops people from using buildings with complicate circulation. This problem was addressed by 

Pedestrian Navigation Systems like Google Maps, or Maps by Apple in outdoor environment and 

urban layouts. However, in order to navigate complex public buildings, individuals must rely on 

their general understanding of structure and layout of the building, and their past experiences. 

Hence, an indoor pedestrian navigation system was developed using the in the third prototype.   

In this prototype, circulation toolkit will be used to address three main challenges in the way of 

developing a practical PNS for indoor environment. Hence, navigation model generated by 

circulation toolkit will be used to identify walkable areas of the navigation model and 

discriminated them from location of furniture and walls inside the floorplan.  

Apart from that, pathfinding algorithm of the circulation toolkit will be used to generate paths 

that connect any two locations inside the building without any need for predefined network of 

routes. 

Finally, Data from smartphone’s sensors will be utilized to track movement of the user and locate 

him/her inside the building using dead reckoning localization method. 
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4.6.1- Visualizing the Floorplan 

 

The first step in developing the navigation application was to visualize the floorplan in the 

application. A vector image is better than a raster image for this purpose, because it does not 

pixelate when a user zooms in on a specific part of the plan. Fortunately, the iPhone API supports 

two vector image formats, which are SVG and PDF. However, in order to visualize each of these 

formats various user interface elements had to be used. To show a SVG image on the iPhone 

display, a WKWebView element must be used and to show a PDF, a UIImageView element has to 

be used. 

Since the purpose of WKWebView is to provide the possibility of creating an internet browser, it 

does not support all the required features for developing an application that allows user to interact 

with the display. For instance, it does not provide the possibility to access information about the 

location of the user’s touch on the screen. Therefore, it was decided to use PDF as the format for 

visualizing the floorplan in the application. Figure 37 illustrates the PDF generate from the first 

floorplan of Architecture Hall for the navigation application. 

 

 

Figure 37: PDF file generated from the floorplan. 
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4.6.2- Proper Data (Maps) From Inside the 

Building 

 

In contrast to outdoor environments and urban layouts, where huge databases of maps and 

information about size and location of obstacles and buildings are available, indoor spaces often 

lack navigational maps and plans. This problem was addressed by the automated process of 

generating the navigation model from the Room-Data of the floorplan developed for the 

circulation analysis toolkit in this project. However, the navigation model was generated in 

Grasshopper using the C# programming language. Since C# objects are not compatible with the 

Swift programming language, in order to transfer the navigation model to the iOS platform, a 

JSON object was created in Grasshopper, which contains wall property values of the navigation 

model’s cells. 

The JSON object consists of a two-dimensional array of zeros and ones that represent the 

sequence of navigation model ‘s cells in rows and columns. Zeros represent walkable cells and 

ones represent unwalkable cells in the JSON object. Figure 38 shows the value representing each 

cell in the JSON object. 
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Figure 38: wall values of the JSON object. 

 

Eventually, the JSON object was deserialized in the XCode, which is the Integrated Development 

Environment for all the Apple products like iOS or MacOS and generates the same two-

dimensional array as the one generated in the first place in Grasshopper. It is possible to create 

the navigation model for the smartphone application using this information. To do that, the width 

of the PDF file generate from the floorplan was extracted from the UIImageView element that 

contains it, then that number was divided to the number of columns of the array, which will return 

the size of the navigation cells on the iPhone display. Then, a UIView element with the same size 

as the UIImageView that contains the visualization PDF was added as a sublayer of the 

UIImageView and placed on top of it. This UIView element is the container of the navigation 

model. Eventually, nodes and cells of the navigation model were generated inside this UIView. 

Figure 39 shows the sequence of layers used in the process of visualizing the floorplan on the 

phone’s display and generating the navigation model on top of the visualization layer. The UIView 

that contains the navigation model also detects the user’s touch interaction with the phone’s 

screen and converts the location of user’s touch to the closest node of the navigation model to that 
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location. It is worth mentioning here that in the final product, similar to the circulation analysis 

prototypes, cells and nodes are hidden to the user. 

 

 

Figure 39: UIView elements of the navigation App. 

 

 

4.6.3- Localization 

 

Dead reckoning is a localization method that calculates the location of a user based on a known 

initial position, direction of the user’s movement, and distance of the user’s motion. Figure 40 

demonstrates the dead reckoning localization method. In this technique, a recent location of the 

user will be calculated by moving from the previous location using a vector created with direction 

and distance of the movement. 
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Figure 40: Dead reckoning localization process. 

 

 

4.6.3.1- Initial Location 

 

In order to define the initial location of the user for the navigation application, three methods 

were designed, after: 

First, the user can identify his initial location by touching his approximate location in the floorplan 

displayed on the phone’s screen (Figure 41). 
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Figure 41: Initial location defined by touching phone's screen. 

 

The second method for defining the start location is by entering the name of that location. As 

mentioned before, “name” is a string property of a spot object, which is empty by default. 

However, in this prototype the “name” attribute of one spot-object located in each room was 

assigned to the name of that room. Hence, the second method for defining the start location is by 

entering the name of any room in the UITextBox element provided in front of the “SET START”. 

Eventually, by pressing the “SET START” the spot with “name” attribute equal to what was 

entered in the UITextBox will be selected as the initial location (Figure 42). 
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Figure 42: Defining the start location by entering the name of that location. 

 

The final technique that allows users to define their initial location is by scanning a QR Code 

provide in their location using the phone’s camera. QR Codes provided in a predefined location 

in each room of the floorplan. These QR Codes have the “id” attribute of the nodes that they are 

associated with embodied in them. Pressing the “SCAN” button provides the possibility to scan 

the QR Code (Figure 43). 
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Figure 43: Defining the start location of the user by scanning a QR Code. 

 

After defining the initial location by using one of these three techniques, the start location will be 

displayed on the phone’s screen as a green circle (Figure 44). 

 

 

Figure 44: The start location displayed on the phone's screen by green circle. 
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4.6.3.2- Destination Location 

 

In the next step, the user’s destination in the floorplan has to be defined. The navigation 

application provides two methods for defining the goal location. First, similar to first method for 

defining the initial location of the user, it is possible to identify the destination by touching the 

approximate location of the end point on the floorplan. 

Second, the goal point can be defined by entering the name of the location in the “UITextBox” 

element provided in front of the “SET GOAL” button and pressing the button. After identifying 

the destination, it will be illustrated by a red circle on the phone’s display (Figure 45). 

 

 

Figure 45: The destination displayed on the phone's screen by red circle. 
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4.6.3.3- Direction and Distance of the Motion 

 

By pressing the “RUN” button after designating the initial and goal locations, the application 

generates the path that connects them using the Theta* algorithm. In order to track the location 

of the user with the dead reckoning localization method, information about the direction and 

distance of the user’s motion are required in addition to initial location. Fortunately, iOS SDK2 

provides the possibility to access this information. 

“CoreLocation” is the default library of the iOS platform that supplies information and services 

for determining an iPhone’s geographical location, altitude, orientation, or position relative to a 

close iBeacon3. All the available onboard hardware, including Wi-Fi, GPS, Bluetooth, 

magnetometer, barometer, and cellular hardware will be employed by the framework to gather 

data (Apple 2018).  

The “locationManager” method of the “CoreLocation” library is the method that generates 

information about the phone’s orientation in the format of angle from true north. In order to 

visualize the orientation of the phone relative to the orientation of the floorplan in the navigation 

application, a small black circle is generated inside the green circle representing the location of 

the user. The black circle rotates around the center of the green circle based on the information 

generated by the “locationManager” method (Figure 46). It is worth mentioning here that the PDF 

representing the floorplan of the building in the navigation application is oriented with true north 

aligned with top of the phone (Figure 47). 

 

                                                        

2 Software Development Kit. 
3 iBeacon is an Apple technology that creates a way for providing location-based information and services 
to iPhones and other iOS devices. 
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Figure 46: Orientation of the phone's visualization. 

 

 

Figure 47: Orientation of the floorplan's visualization. 
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“CoreMotion” is the default library of the iOS platform that reports data related to motion and the 

environment from the onboard hardware of iOS devices, including accelerometer, gyroscope, 

magnetometer, and barometer. While some services of this framework let developers access raw 

values recorded by the hardware, others provide processed version of those values (Apple 2018). 

The “CMPedometer” object of the “CoreMotion” library, which provides information about 

distance of the motion, number of steps, and type of user’s activity (running, walking, taking 

stairs, etc.) was instantiated and the motion’s distance was combined with the motion’s direction 

generated by “locationManager” to create the user’s motion vector. Eventually, the green circle 

that represents the location of the user moves using the generated motion vector (Figure 48). 

 

 

Figure 48: User's localization inside the navigation application. 
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5- Discussion and Conclusion 

 

In this project I have done a survey on how the circulation design of a building might affect its 

performance during use. I explained three aspects of circulation that influence design of the 

building.  

First, I described the concept of congestion and its effects on human-experience inside a building. 

Then I clarified how circulation design during the architectural design process affects occupant 

safety during a disaster, and how more sensitive circulation design is essential for reducing 

casualties during a catastrophe.  Eventually, I explained the concept of wayfinding in complex 

architectural settings and how people avoid confusing and complicated environments. 

Next, I proposed an algorithmic approach to circulation and developed a computational toolkit 

that can be used during the design phase of the building, or after construction to improve its 

circulation performance. 

The circulation toolkit extracts a navigation model from an architectural floorplan in the format 

of CAD or BIM and generates optimal and realistic looking routes that mimic human movement 

behavior between any two locations inside the building. 

Finally, I developed three prototypes using the circulation toolkit to provide some information 

and insight about the challenges that interior circulation creates for performance of the building. 

 

 

5.1- Advantages and Opportunities 

 

The main advantages of the proposed circulation toolkit in comparison to other circulation 

computational tools are: 

1. The proposed toolkit is relatively quick and computationally cheap in comparison to 

agent-based crowed simulation tools that are popular in the architecture industry. 

Although, with emergence of modern graphic processors and GPU computing methods, 
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agent-based crowd simulations are not as slow and time consuming as they used to be, 

these tools are still slower than the proposed method. 

2. The proposed circulation toolkit mimics human behavior inside a building more 

accurately than agent-based crowd simulation tools. This is due to the fact that human 

movement behavior happens when the destination location and the path to it are already 

imagined by the person. However, agents of agent-based tools are moving inside the space 

mindlessly according to rules that define their interaction with other agents and the 

environment of the simulation in most scenarios. 

3. The pathfinding algorithm used in developing the circulation toolkit, which is called 

Theta* is the most compatible pathfinding algorithm for architectural analysis, because in 

contrast to other pathfinding algorithms, which are limited to the edges of the navigation 

grid and generated zig zag and unrealistic looking paths, Theta* generates routes which 

are similar to human movement behavior. 

4. Since the circulation toolkit is developed as a plugin for design software, that is commonly 

being used in most architecture firms and schools, it is more likely for it to become part of 

standard architectural framework than agent-based simulation tools, which mostly are 

expensive independent software programs. In addition, data transfer problems between 

architectural design software and simulation tools do not exist for the circulation toolkit. 

5. While considering furniture of the building is a rare feature in most indoor pedestrian 

navigation systems, in the PNS prototype developed in this project all furniture of the 

building become part of the navigation model. The method used for generating the 

pedestrian navigation model in this project also provides the possibility for architects to 

consider furniture of the building in their analysis. 

6. The dead reckoning localization method used in the PNS prototype for tracking the user 

omits expensive infrastructure required for commonly used localization methods like 

indoor GPS, Wi-Fi finger printing, Wi-Fi triangulation, etc. 
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5.2- Directions for Future Research 

 

As mentioned before, the fundamental requirement of using the circulation is having access to 

architectural floorplan in the computational formats like CAD or BIM. While this data is available 

for m0st recently constructed buildings, some of the older ones lack this data, since their 

architectural documents and drawings were developed originally on paper. There are huge 

databases of scans from public buildings’ floorplans available online, which are not useable by the 

circulation toolkit. Hence, developing an automated process for generating navigation model 

from architectural documents and drawings in formats other than CAD or BIM is one of the areas 

to continue this research. 

While agent-based crowed simulation tools are slower and more computationally expensive than 

the circulation toolkit, they are becoming faster day by day with the advent of extremely fast and 

inexpensive CPUs and GPUs. Therefore, computational power and speed is hardly going to be a 

problem for agent-based simulation tools. Consequently, comparing the results of analysis done 

by the circulation toolkit with the results of the same analysis done by agent-based simulation 

tools to evaluate their precision and speed is one area of required research for the future. 

Moreover, integrating the circulation toolkit approach with agent-based simulation tools to 

develop a new approach to analyzing and evaluating human behavior inside architectural space is 

an interesting area of research for the future. 

Evaluating the results of circulation analysis using the circulation toolkit based on actual human 

experience inside the space requires more research for the future too.  Although the circulation 

toolkit mimics human movement behavior accurately, there are many parameters in real-world 

events that influence individuals, which do not exist in the computational simulation tools that 

mimic human behaviors and experiences. Hence, in order to evaluate how accurate and reliable 

the results of the circulation analysis are, in future research they have to be compared against 

what people actually feel in the space. 

Finally, although localizing the user in the pedestrian navigation system prototype by the dead 

reckoning method omits the need for expensive infrastructures inside the building, this 

localization method might not be accurate enough for a practical indoor PNS. This is due to the 

fact that magnetic fields of electrical objects and devices present in the space influence the 

gyroscope of the phone. Therefore, direction information generated by the phone’s gyroscope 

alone always contains some error. In addition, since information about the distance of the user’s 
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movement is an approximation based on numbers of steps he/she takes, it also contains some 

level of errors. Although this error is not significant for each step, it accumulates during long 

walks, therefore the user might end up in wrong locations after travelling long distances. 

Consequently, finding a more accurate localization method, or developing new algorithms that 

generate distance and direction information from the gyroscope and accelerometer more precisely 

is another area of future research. 
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