
www.manaraa.com

© Copyright 2018

Arash Naderpour

www.manaraa.com

From A to B: An algorithmic approach to circulation inside
buildings

Arash Naderpour

A Thesis

submitted in partial fulfillment of the

requirements for the degree of

Master of Science in Architecture

University of Washington

2018

Thesis Committee:

Brian R. Johnson, Chair

Alex T. Anderson

Program Authorized to Offer Degree:

Architecture

www.manaraa.com

University of Washington

Abstract

 From A to B: An algorithmic approach to circulation inside buildings

Arash Naderpour

Chair of Thesis Committee:

Brian R. Johnson, Associate Professor

Architecture

Circulation design is a challenging part of the architectural design process. Architects

traditionally address these challenges based largely on rules of thumb, personal

experience, and simple tools. The modern environment, with greater computational

power available, invites a more careful analysis and consideration. The purpose of this

thesis project is to illustrate how algorithmic tools can be used to simulate human

behaviors during the architectural design process or after construction of the building to

improve building’s performance. To achieve this objective, analysis approaches related

to congestion, emergency egress, and wayfinding inside architectural space were

surveyed. Then an algorithmic toolkit was developed based on an artificial intelligence

pathfinding algorithm called Theta*. Finally, several application prototypes were

www.manaraa.com

created to illustrate application of the toolkit to (a) evaluating positive and negative

implications of congestion in the design of the buildings, (b) assessing congestion

during emergency egress situations, and (c) assist individuals navigating complex

buildings.

www.manaraa.com

i | P a g e

Table of Contents

Table of Contents…………………………………………………………………………………………….i

List of Figures .. iv

1 – Introduction .. 1

1.1- Motivation .. 1

1.2- Problem Statement ... 3

2 - Background .. 5

2.1 – Pathfinding Algorithms .. 6

2.2 – Indoor Navigation and Model ...7

2.3 - Localization and Positioning.. 14

3– Theoretical Background ... 17

3.1- Architecture Circulation and Wayfinding ... 17

3.1.1- Congestion ... 18

3.1.1.1- Productive Congestion and Serendipity ... 18

3.1.1.2- Wayfinding in Existing Buildings ... 19

3.1.1.3- Circulation and Emergency Evacuation .. 20

3.2- Problem Space, Grids and Graphs .. 21

3.2.1- Static and Dynamic Model ... 23

3.2.2- Single Agent or Multi Agent .. 23

3.3- Pathfinding and Artificial Intelligence .. 24

3.3.1- Brute-Force Search .. 24

3.3.1.1- Breadth-First Search ... 25

3.3.1.2- Uniform-Cost Search .. 26

3.3.1.3- Depth-First Search .. 26

www.manaraa.com

ii | P a g e

3.3.2- Heuristic Search .. 27

3.3.3- Heuristic Evaluation Functions .. 28

3.3.4- Fundamental Pathfinding Algorithms .. 29

3.3.4.1- Pure Heuristic Search ... 29

3.3.4.2- A* Algorithm .. 30

3.3.4.3- AP-Theta* Algorithm .. 31

3.4- Indoor Localization .. 35

3.4.1- Dead Reckoning ... 35

3.4.1.1- Accelerometer .. 36

3.4.1.2- Magnetometer ... 37

3.4.1.3- Gyroscope .. 38

4- Methodology .. 40

4.1- Workflow ... 41

4.1.1- Data Transfer ... 42

4.2- Extracting the Navigation Model ... 44

4.3- Data Structure and Methods.. 48

4.3.1- Data Structure ... 49

4.3.1.1- Spot Object Attributes ... 49

4.3.1.2- Spot Object Methods ... 52

4.3.1.3- Cell Object Attributes .. 53

4.3.1.4- Cell Object Methods .. 54

4.3.2- Methods ... 54

4.3.2.1- Theta ... 54

4.3.2.2- Build Path ... 55

4.4- Congestion Analysis prototype .. 56

4.4.1- Navigation Model (MouseTrap) ... 57

4.4.2- Super Cells ... 58

www.manaraa.com

iii | P a g e

4.4.3- Start and Destination Points ... 60

4.4.4- AP-Theta* Solver (Mouse) ... 61

4.4.5- Route Density and Data Interpretation .. 62

4.5- Emergency Evacuation Prototype .. 64

4.5.1- Start Points and Destinations .. 65

4.5.2- Route Generation .. 66

4.5.3- Body Density and Data Interpretation .. 67

4.6- Personal Navigation Assistant ... 70

4.6.1- Visualizing the Floorplan.. 71

4.6.2- Proper Data (Maps) From Inside the Building ... 72

4.6.3- Localization ... 74

4.6.3.1- Initial Location ... 75

4.6.3.2- Destination Location .. 79

4.6.3.3- Direction and Distance of the Motion .. 80

5- Discussion and Conclusion .. 83

5.1- Advantages and Opportunities ... 83

5.2- Directions for Future Research .. 85

References .. 87

www.manaraa.com

iv | P a g e

List of Figures

Figure 1: Generation of network of paths from a simple floor plan from left to right...................10

Figure 2: Sequence of spaces between start point and destination. .. 12

Figure 3: Congestion metric equation. .. 14

Figure 4: Graph. .. 22

Figure 5: Grid. ... 22

Figure 6: Sequence of generated nodes by breadth-first search algorithm. 26

Figure 7: Sequence of generated nodes by depth-first search. ... 27

Figure 8: Limited headings of the generated path by A* algorithm. ... 31

Figure 9: Sub-optimal and unrealistic path generated by A* algorithm. 32

Figure 10: Line-of-sight test of node S.. 33

Figure 11: Maintaining angle range of node S. ... 34

Figure 12: Generated path by Theta* (blue), and A* (red). .. 35

Figure 13: Schematic structure of accelerometer. .. 37

Figure 14: Traditional compass (Mizaralkora 2017)... 38

Figure 15: Gyroscope schematic structure (Gyroscope 2018). ... 39

Figure 16: Room-Data in Revit floorplan. .. 43

Figure 17: Room-Data in Rhino as Hatch object. ... 44

Figure 18: Changing hatch to Brep by explode operation in Rhino. .. 45

Figure 19: Process of generating Context of the navigation model. ... 46

Figure 20: 8” raw-navigation grid inside the context model. ... 47

Figure 21: Final navigation model. Zeros illustrates walkable cells (Search area) and ones

illustrates wall-cells. ... 48

Figure 22: id attributes of Spots. .. 50

Figure 23:Neighbors attribute of a Spot. ... 51

Figure 24: Adjacent Cells of a Spot. .. 52

Figure 25: Spots located on the corners of a Cell object. .. 53

Figure 26: Architecture Hall first floor. ... 57

Figure 27: Architecture Hall navigation model generated by MouseTrap component. 58

Figure 28: Super cells colored in red on top of the navigation model. ... 59

Figure 29: Possible start points and destination points in the floorplan. 60

www.manaraa.com

v | P a g e

Figure 30: All the possible routes, generated between start and destination points 61

Figure 31: Heat map demonstrating congestion chance on a floorplan. 63

Figure 32: Walkable area in each (A) and number of routes (B) in super cells around the core. 63

Figure 33: Start points (circles) and exit doors (squares) for emergency egress. 66

Figure 34: Shortest paths to closest exits for each occupant. ... 67

Figure 35: Heat map illustrating the congested locations of the floorplan during the egress

process. ... 69

Figure 36: Number of walkable navigation model cells (A) and highest number of bodies (B) in

super cells around the core. .. 69

Figure 37: PDF file generated from the floorplan.. 71

Figure 38: wall values of the JSON object. ... 73

Figure 39: UIView elements of the navigation App. ... 74

Figure 40: Dead reckoning localization process. ... 75

Figure 41: Initial location defined by touching phone's screen. ... 76

Figure 42: Defining the start location by entering the name of that location. 77

Figure 43: Defining the start location of the user by scanning a QR Code. 78

Figure 44: The start location displayed on the phone's screen by green circle. 78

Figure 45: The destination displayed on the phone's screen by red circle. 79

Figure 46: Orientation of the phone's visualization. ... 81

Figure 47: Orientation of the floorplan's visualization. ... 81

Figure 48: User's localization inside the navigation application. ... 82

www.manaraa.com

vi | P a g e

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my advisors Prof. Brian Johnson and Prof.

Alex Anderson for the continues support of my thesis study, for their patience, motivation,

and immense knowledge. Their guidance helped me in all the time of research and writing

of this thesis. I could not have imagined having better advisors and teachers for my Master

study.

My sincere thank also goes to my family for supporting me spiritually throughout my

whole education, especially during writing of this thesis and my life in general.

www.manaraa.com

vii | P a g e

DEDICATION

This thesis is dedicated to my beloved parents, Farideh and Reza Naderpour who have

always been a source of inspiration, encourage, and stamina to undertake my difficulties

and to face the eventualities of life with strong will and hard work.

www.manaraa.com

1 | P a g e

1 – Introduction

This chapter presents an introduction to this Master of Science research. In chapter 1.1, the

motivation of this research is explained by presenting several challenges that indoor wayfinding

and indoor navigation present for designing and maintaining architectural spaces and

introducing some possible solutions for the challenges.

1.1- Motivation

One of the problems of urban growth, with its proliferation of roads and rapid expansion of

complex buildings, is increasingly difficult wayfinding. Be it for work, shopping, healthcare or

recreation, it can be frustrating and time consuming for people to find their way in unfamiliar

urban environments or in complex buildings. Some individuals in such circumstances are

overwhelmed by a feeling of ineptitude which they attribute to a missing “sense of orientation;”

others blame the architects for designing confusing settings and the graphic designers for

providing vague signage. Whoever the target of complaint, the irritating and unpleasant

experience of getting lost influences people’s general attitudes towards the environment.

Architectural settings spoiled with way finding difficulties are not appreciated by anyone (Passini

1996). At the urban and regional scale this problem prompted creation of navigation tools like

Google Maps or Apple Maps, which provide guidance for people to reach their destinations more

easily. Over the past few years these tools have become established for route planning, but they

are mainly designed for outdoor environments, since they employ satellite-positioning

technologies (GPS).

Although much research has been done on exterior pedestrian navigation systems in the past few

years, way finding inside complex buildings like hospitals, airports, malls, office buildings,

universities and commercial centers with complex floor plans has received far less attention by

researchers and remains a challenging topic. Individuals must depend on their general knowledge

about the structure of buildings, or their previous experience, and the visual inputs, like posted

www.manaraa.com

2 | P a g e

maps, which they encounter to find their way while moving inside most buildings. They must do

this without the support of external navigation assistance, so they often fail to find their way

quickly in complex buildings. Some corporations have mentioned that the irritation caused by

wayfinding difficulties not only arouses negative feelings for the physical setting, but that it also

effects people’s impressions of the corporation itself and the services provided in that setting

(Carpman and Grant 2016). Therefore, a well-established tool offering interior navigational

assistance would be beneficial both for users of a space (Makri, Zlatanova and Verbree 2015) and

the organizations that own them.

Aggregate way finding, which we refer to as circulation, has important implications in the design

of buildings as well. Uncomplicated circulation inside a building reduces the time spent consulting

confusing information displays and even liberates individuals from time consuming

interpretation of vague direction information given by staff. It solves some building efficiency

issues and has financial impacts that are not easy to calculate. However, there is more to good

circulation design than efficient movement; one occupant-level spatial quality that interior

architecture and space planners are interested in is the concept of congestion. This can be both a

positive and a negative quality in architectural space, as it can encourage productivity (productive

congestion) in some environments and evoke displeasure in others. Despite extensive research

into the role of both types of congestion, the lack of a specific tool that evaluates a designed floor

plan based on this quality is perceptible.

Another primary problem that difficult wayfinding creates is accessibility. Individuals often avoid

environments in which they know they will get lost. Contemporary planners avoid building

complex shopping centers with lots of twists and turns, so that people would spend more time

wandering around and theoretically shop more due to countless objections and negative

evaluation of commercial productivity. People with physical or sensory impairments have even

harder times in buildings with complicated circulation, and inappropriate wayfinding tends to be

especially challenging for them. These difficulties can create architectural barriers of a

psychological nature which can be just as disruptive as physical barriers (Carpman and Grant

2016).

Building safety is also associated with wayfinding. Emergency evacuation is much more difficult

in confusing settings. In emergency situations wayfinding decisions must be made quickly and

problem-solving behavior may be confounded by anxiety-induced stress. Lack of consideration

for easy and fast access to emergency facilities and exits during the initial stages of architectural

design by architects can increase the total evacuation time for users of the building during

www.manaraa.com

3 | P a g e

emergency situations like fire, earthquakes, terrorist threats, and so on. Moreover, without

predictions of the best routes that first responders must take to access various parts of complex

buildings, the performance of the first responders and emergency teams is reduced because of

increased time required to provide services for individuals inside buildings.

Wayfinding influences not only navigation in existing buildings, but also key design parameters

during architectural design process, especially for large public buildings. Many standards have to

be met related to the circulation and the paths that users should take in order to access different

parts of the building. For example, there are fire codes related to maximum distance of each space

to the closest fire escape, or the maximum distance of each room to the entrance of the emergency

section of a hospital. In addition, analyzing the accessibility and circulation of a floor plan on the

basis of design efficiency and convenience for users is beneficial to the architecture design process.

A toolkit that provides circulation analysis would be extremely helpful, since it could provide

insights for architects about, for example, the best place to establish amenities inside an office

based on optimized routes, or about locations that make it convenient for people to collaborate

with each other, or how long will it take to travel from one place to another inside a building. The

toolkit could also be beneficial for occupant health by calculating how many calories will be

burned during travel from one part of a building to another or by demonstrating the desirability

of using stairs in a building. These benefits would also contribute the efforts of designers and

building owners seeking Living Building Certification.

1.2- Problem Statement

The spread and popularity of algorithmic tools has changed the way architects design (Kalay,

2004). Architectural design processes have been increasingly developed to foster more thorough

and precise considerations of numeric criteria like stiffness of a building’s structure, or the

amount of daylight that a space receives. This is visible within contemporary computational

platforms, as well as organizational frameworks, which try to implant the variations and

invariants related to a building’s materiality, its internal spatiality, and its external relations with

a solid process structure (Ahlquist, Sean and Menges 2011). Simulation techniques are a critical

www.manaraa.com

4 | P a g e

part of the current digital design framework and can be applied to building design, although they

are mostly in the domain of engineering.

To analyze human-level concerns, such as how the space feels, how the space will be utilized, or

how the layout of the space matches the needs of the program, architects often rely on agent-based

crowd simulation models that predict the movement of people in a space. The results of these

analyses are extremely accurate; however, since they must be calculated dynamically (over a series

of time steps), they are also computationally expensive and time consuming, often taking hours

or even several days to return the results for a single design (Nagy, et al. 2017). Although these

analyses may be suitable to validate some design projects based on their functionality and needs,

they may not become part of the architectural design framework due to their expensive required

resources (time and computing power).

On the other hand, there are three main problems that make developing an indoor navigation tool

challenging in contrast to outdoor PNS (Pedestrian Navigation Systems):

1. Lack of reliable position information inside a building (Li, et al. 2012).

2. Lack of proper data (maps) designating the locations of the obstacles, routes, walls, and

destination inside a building.

3. Complexity of indoor space configuration and freedom of users’ movement inside the building.

Availability of satellite-positioning technologies (GPS) in outdoor environments provides the

possibility of locating the user with accuracies to a few meters radius in outdoor environments,

depending on the strength of the GPS signal. However, these technologies are not available for

indoor spaces. This is due to the fact that signal to noise ratio of satellite signals are usually close

to the threshold for detection of GPS receivers, so GPS signals are not detectable indoors, specially

behind concrete walls. Apart from that, high frequency signals like GPS (1500 MHz) do not

propagate inside buildings, since they will get absorbed much more by objects.

Unlike outdoor navigation systems where location information provided by GPS is paired with

rich databases of road networks and obstacles provided by satellite-derived map data to produce

navigation, indoor spaces lack such information and database, hence the path networks in indoor

environments must be computed. Such path finding algorithms often rely on graph theory and

graph representations, which is an area in mathematics that studies mathematical processes and

data structures used to model pairwise relations between objects. Therefore, generating a decent

www.manaraa.com

5 | P a g e

network and data model that simplifies a building structure and floor plan is crucial for deriving

the overall connectivity of spaces in a building and for representing positions of objects, obstacles

and walls within the environment. Producing such a model for various indoor environments

automatically is one of the challenges of indoor PNS.

While individuals’ movements are restricted by massive obstacles like buildings or roads in

exterior environments, the only objects that limit people’s movements inside a building are walls

and furniture, hence they have unlimited paths to take in order to go from one place to another

inside the space between the interior borders of buildings. The freedom of human movements and

complicated paths they take inside a building presents another challenge to developing indoor

navigation systems, but it is also one of the reasons that various search algorithms have been

developed for wayfinding purposes. The paths generated by Artificial Intelligence search

algorithms have to maximize the usability and successful navigation while minimizing the chance

of a user getting lost. They also have to mimic human movements. Developing and using more

sophisticated and smart pathfinding AI algorithms that simulate human movements are essential

to developing a practical indoor navigation system.

There are additional challenges in developing an indoor PNS. The path network construction

process may not be easy and straightforward due to complex indoor space configurations.

Considering the rich semantic information invested in building components like indoor furniture,

or elevators or stairs that provide a choice for users who want to move from one floor to a space

on another floor, and the lack of rich semantic models with room adjacency information in them

are some of the other challenges of indoor navigation systems.

2 - Background

In the past decades, many researchers from multiple fields have studied PNS. This review divides

that work into four main categories. First, many studies have been done in computer science and

robotics on generic search algorithms. Second, studies about extracting interior information

about a building from a CAD or BIM model, or research on building the 3D model of the physical

environment in real time, using a camera or laser scanner. Third, research done on locating a user

www.manaraa.com

6 | P a g e

inside a building in real time. Fourth, studies related to representation of indoor location and

navigation information to users of indoor space. This review introduces some of the most

important studies in each of the four categories and explores their pros and cons in order to

support development of a better indoor navigation tool for specific tasks.

2.1 – Pathfinding Algorithms

Any algorithm that solves a search problem is called a “search algorithm” in computer science,

which means the algorithm extracts information stored within some data structure or calculated

in the search space of a problem domain. It is possible to categorize search algorithms based on

their mechanisms of search. Recent developments in artificial intelligence provide the possibility

to solve problems that were unsolvable with exhaustive enumeration search algorithms. In

addition, current AI algorithms are many times faster and more reliable than classical search

algorithms. Finding the optimal route between two points (called “routing”) is one of the

categories of search problems that is now solvable cheaply and reliably thanks to advancements

of artificial intelligence.

The standard routing AI algorithm is the Dijkstra algorithm developed by E. W. Dijkstra (Dijkstra

1959). This algorithm finds the shortest path between nodes in a graph. The algorithm labels each

position with its distance from the start node along the best-known path. Initially, no path is

known, so all the nodes are labeled infinity. As the algorithm proceeds and the paths are found,

the labels may change, reflecting the better paths. Simply put, the algorithm calculates the fastest

path between two nodes as a function associated with the cost of travelling.

The main drawback of the original Dijkstra algorithm is that it explores an unnecessarily large

search area. This led to the development of heuristic search algorithms that instead of searching

all nodes, look for shortest path in the direction of the destination node. These have names like

A*, D*, D*-Lite, Theta*, AP Theta*, etc. Hart, Nilsson and Raphael 1968 developed the A*

algorithm that avoids considering directions with non-favorable results and decreases

computational time by finding the nodes on the shortest path based on their distance from the

start node and distance from destination node.

www.manaraa.com

7 | P a g e

Stentz (Stentz 1994) introduced the D* (Dynamic A*) algorithm, which searches an environment

that is either completely unknown, or when only partial information about it is available, to find

the shortest path between two nodes. The algorithm makes assumptions about the unknown parts

of the environment and starts looking for the optimized path based on the initial assumptions. If

new map information (such as previously unknown obstacles) are observed during the search, the

information will be added to the map and, if necessary, a new shortest path will be computed from

the last node found to the destination node.

One of the downsides of all the grid-based pathfinding algorithms like A*, D* and its variants (D*-

Lite, Focused D*, etc.) is that paths formed by grid edges can be sub-optimal and unrealistic

looking, because the possible headings are artificially constrained. As an improvement, Nash et

al. (Nash, et al. 2007) developed the Theta* algorithm that searches grid-based models to find the

shortest realistic looking path without constraining it to grid edges. The algorithm considers line

of sight from node to node in order to find the optimal path. The realistic looking paths that Theta*

algorithm finds are extremely close to human movements, so Theta* is an appropriate algorithm

for human movement simulation.

There are a variety of routing algorithms available specifically for traversing road networks. For

instance, a dynamic programming approach was developed by Bellman (Bellman 1958) to

minimize the travel time between two points. In his approach the cost of traveling between a set

of locations that are connected by road are time instead of distance. Also, a finite number of

iterations is mandatory in his iterative algorithm.

2.2 – Indoor Navigation and Model

Zlatanova (Zlatanova and Baharin 2008) studied the movement of mobile rescue units in

emergency situations in order to provide a solution for navigating on road networks. They

assumed that the locations of the moving objects (rescue units) are recorded uninterruptedly in a

Database Management System (DBMS) and organized according to a predefined spatial-temporal

schema. They considered information factors related to generic groups named: spatial, user, and

event information. Their emergency response network model of the navigation tool represented

www.manaraa.com

8 | P a g e

the road network, the characteristics of the emergency event, information about the user, and the

optimal route generated by the A* algorithm provided by the pgRouting extension of PosGIS.

Wu et al. (Wu, Marshall and Yu 2007) used A* and Dijkstra’s shortest path algorithm to navigate

through an “Intelligent Map” which is based on a new data structure called “Cactus Tree” to

provide indoor navigation guidance for sightless individuals. Their approach consists of three

components: Cell decomposition, Cactus tree-based path planning for indoor space, and A* based

path computation. Cactus tree has pre-knowledge of relationships between indoor elements that

Intelligent Map provides. Since this non-linear data structure is an ordered/sorted tree, the

structural connection is richer than the simple “before” and “after” relationships among objects

in sequences. The objects are “left”, “right” and “branches (below or equal)” to other objects in

this tree. Eventually, the path following algorithm used by them is based on dead reckoning.

However, they integrated human factors, plus data about the flooring and furnishing structure

beside the intentional path that was planned. Although their approach is promising for assisting

visually impaired people to navigate indoor environments, unrealistic paths generated by the A*

algorithm and visibility graph is one of the main drawbacks of the proposed approach.

Chen and Feng (Chen and Feng 2009) developed two fast flow control algorithms for real-time

emergency evacuation of populous places such as shopping malls, subway stations, campus

buildings, etc. to minimize the overall evacuation time based on the properties of those buildings.

The first algorithm was developed for situations where there is no limit on the allowed number of

evacuation paths, while the second algorithm was developed for situations where a limited

number of evacuation paths are available. They used a network of “nodes” representing the

locations inside the building (rooms, corridors, stairs, halls, etc.) and “arcs” representing the

travel path between two nodes. Then, the Dijkstra algorithm was used to find the shortest paths

from the given source location to each one of the exit doors. They calculated the traversal time of

each path by dividing the length of each path by the average walking speed of people. Eventually,

to illustrate real-time application of the developed flow control algorithm, they integrated a

preliminary head-mounted augmented reality display (HMD) which tracks the position and

orientation of the user in their evacuation system. Omitting all the indoor objects and furniture

in order to abstract the navigation model, plus unrealistic paths generated by the Dijkstra

algorithm are the main limitations of this approach.

Xu and Van Doren (Xu and Doren 2011) developed a “Museum Visitors Guide (MVG)” in the

Greenfoot programming environment using an optimized A* algorithm to provide navigation

guidance for museum visitors. Their application allows the user to find the shortest route to

www.manaraa.com

9 | P a g e

his/her favorite artwork(s) from his/her current location using any computer that is conveniently

located in the museum. The application reacts dynamically to the modifications of the floor plan,

and/or locations of the exhibits, plus emergency situations that might make part of the currently

suggested path invalid and regenerate a new path if it can. The application also allows the user to

select multiple artworks and it generates the quickest route to cover them all. Finally, the

application provides guidance for a user to avoid fire while he is inside the museum. One of the

main disadvantages of this approach is that, navigation assistants (computers located inside the

museum) are not capable of tracking user while he moves from one place to another, since they

are statically located. Apart from that, their proposed navigation model is too abstract and did not

consider indoor furniture and objects.

Xu et al. (Xu, Wei and Zlatanova, AN INDOOR NAVIGATION APPROACH CONSIDERING

OBSTACLES AND SPACE SUBDIVISION OF 2D PLAN 2016) proposed an indoor pathfinding

approach that takes obstacles of different shapes into account, subdivides the remaining navigable

space using the Delaunay triangulation algorithm and generates a network, which provides

realistic navigation by using a Visibility Graph. They processed the available indoor spatial

information to generate the navigation network. In order to provide geometrical information

about the indoor objects, they described them as points, lines and polygons. For instance, they

represented doors by their midpoints, walls were represented as a line connecting the two ends,

and indoor objects were represented as lines, triangles and polygons based on their size and

location in the room. Next, they constructed the network of paths by subdividing the free space

into triangles. The center of gravity of each triangle was chosen as a node in the network of

navigation, and by connecting all the nodes together, excluding edges that cross the obstacles, the

network of paths was generated. Figure 1 illustrates the process used in this study to generate the

network of paths from a simple floor plan. Eventually they traversed the network in order to find

the path from each node in the network to another node. One of the disadvantages of the proposed

approach is that, the process of extracting the navigation model from the architectural documents

and abstracting it is not completely automated. Apart from that, the computational process of

generating the routes network by connecting the centroids of triangles is computationally

expensive. In addition, the navigation model generated in this approach is extremely abstracted,

and the paths generated by the algorithm are neither optimized nor realistic.

www.manaraa.com

10 | P a g e

Figure 1: Generation of network of paths from a simple floor plan from left to right.

Xu et al. (Xu, Wei, et al., BIM-BASED INDOOR PATH PLANNING CONSIDERING OBSTACLES

2017) in another study used Industry Foundation Classes (IFC) to extract semantic, topological

and geometric information related to indoor space and furniture and used it to develop a 3D

indoor navigation system on a multi-floor building. They extracted geometrical information, like

the floorplan outline, building components (e.g. tables, chairs, cupboards, beds and sofas),

facilities and equipment (e.g. bathroom and kitchen furniture), as well as semantic data, like

privacy level of the space, entry door status (if door is locked or not), “association between space

and related building elements, and the relationship between an element and the spatial structure

(IfcRelContainedInSpatialStructure)”, and generated a grid subdivision based on the extracted

information. In this way, they created a navigable network for each floor. They then produced the

total navigation graph of multi-floors by connecting the graph of every floor together through

staircases or elevators. Eventually, the Dijkstra algorithm was used for path planning avoiding

the obstacles. The navigation model extraction process proposed in this research is automated

and generates a model with acceptable levels of detail. However, the path finding algorithm used

in this work is slower than most of the grid-base path finding algorithms. In addition, paths

generated by the Dijkstra algorithm are unrealistic and not similar to human movements in most

cases.

Diakité and Zlatanova (Diakité and Zlatanova 2016) have proposed a workflow for extracting free

navigable space from a fully furnished 3D model, which can then be used to support pedestrian,

robot, and drone navigation systems. The authors indicate that, while the existing approaches use

simplified representations of the space and ignore the objects inside, their workflow models the

indoor navigable space with enough complexity to precisely know where a subject can move inside

the building. They presented two approaches for extracting the navigable space from the 3D model

without ignoring the inside objects based on the format of the input 3D model of the building.

Their first approach could be used to automatically extract geometrical and semantic information

from an IFC input mode. The second approach could be used to extract information about the

building that just contains a geometrical description in the form of 3D CAD models of their

www.manaraa.com

11 | P a g e

interior design. One of the drawbacks of the proposed workflow is that the stability and reliability

of the result depends on the quality of the input IFC or CAD model. Apart from that, their

approach seems extremely promising for indoor navigation systems.

Zhu et al. (Zhu, et al. 2013) developed the Chinese standard of Multidimensional Indoor Location

Model, which describes ontology of indoor location. The model corresponds to 3D concepts like

CityGML and IndoorGML (Geography Markup Language). The goal of their study was to develop

an exchange GML-based format for indoor navigation. They hypothesized that

nonrepresentational indoor locations can be formally described using qualitative (semantic) and

quantitative (geometrical) information. They argued that current indoor location services may be

providing contextual noise and lack user-concerned data about the location. They proposed a

richer, multi-dimensional indoor location model that represents absolute and relative geometrical

and semantic information about indoor space for the user.

Liu and Zlatanova (Liu and Zlatanova 2011) developed a pathfinding algorithm that represents

“natural movement of pedestrians” inside the floor plans of buildings with complex indoor

structures. The proposed algorithm which is called “DOOR-TO-DOOR” is interpreted as the direct

walking route from one door to the next visible door or the shortest feasible route between two

invisible doors. The algorithm is a typical network-based algorithm that treats the doors as nodes

and the rooms as edges of the network in contrast to network models that treat doors as edges

connecting rooms (nodes). The algorithm is organized with a two-level approach. First, the

shortest path between the location of the user and the final exit will be generated using the

Dijkstra algorithm (Dijkstra 1959), this route describes which rooms and corridors must be passed

in order to arrive to the final exit. Second, when a pedestrian arrives at the door attached to a

room a shortest path inside the room will be generated using Dijkstra algorithm between the start

door and the target door in the room without considering the interior obstacles (e.g. furniture,

pillars, other pedestrians, etc.). Finally, the algorithm provides the door-to-door path obtained at

the room level for the pedestrian according to the sequence of rooms obtained in the floor level.

The presented work has several major drawbacks. First, no interior obstacles (e.g. furniture,

columns, other occupants, etc.) are considered in this method and rooms were assumed to be

completely empty. Second, running the path finding algorithm twice reduces the speed of the

process and might make the algorithm useless in some design methods like generative design

process where many design options will be generated algorithmically and evaluated based on a

given design goal to discover one or more high-performing solutions for the design problem, plus

rich semantic models that hold room adjacency information required for the first step of the

algorithm are not currently available for all buildings. Finally, paths that connect doors to each

www.manaraa.com

12 | P a g e

other are not reliable and efficient, since most of the time initial location or destination of the

individuals is somewhere within the boundaries of a room not at a door.

Mortati (Mortari, et al. 2014) proposed a novel algorithm for extracting the so called “Geometric

Network” graph, which holds both metric (i.e. Euclidean distance between nodes) and topological

information (i.e. connectivity of nodes) for indoor navigation to overcome the weaknesses and

constraints of the existing approaches in the literature. They assumed that a semantic geometric

model of the building is available and developed their algorithm in a hierarchical two-level

approach similar to Liu and Zlatanova’s (Liu and Zlatanova 2011) approach. Firstly, a weighted

graph that only includes inter-space connectivity was constructed. A shortest path algorithm

(Dijkstra) was launched on top of the graph in order to find the sequence of spaces between a

source and a destination (Figure 2).

Figure 2: Sequence of spaces between start point and destination.

After determining the sequence of rooms, they generated the physical path incrementally room

by room along the defined sequence of rooms. The algorithm that generates the physical path on

the 2D floor plan consist of six geometrical operations:

1- Inward offsetting of the footprint of the space.

2- Sampling of the boundary of the originating polygon.

3- Computing a Constrained Delaunay Triangulation on the sample points.

4- Dividing each mesh face that has no constrained edges into three smaller triangles.

www.manaraa.com

13 | P a g e

5- Assigning the nodes that represent topographic space in dual representation to the space they

belong.

6- Linking nodes to each other based on adjacency of the topographic space they represent in

original space.

In contrast to the “DOOR-TO-DOOR” approach that was mentioned before, the “Geometric

Network” does not ignore indoor obstacles; however, room adjacency information is still required

for the first part of the algorithm and paths generated by it are not optimized and are dissimilar

to natural human movements.

Goetz and Zipf (Goetz and Zipf 2011) developed a model that represents indoor environments

with topologic, semantic and metric information that allows nearly length-optimal routing in

complex building structures (2D floor plan). They extracted the graph elements manually from

floor plans and gathered additional semantic information for various functions of the graph. The

authors also focus on related parts of a complex indoor space which are required for network

construction like corridors and stairs. Additionally, they consider obstacles and special semantic

areas inside rooms and how to incorporate those areas in the routing graph by adding additional

nodes to the graph manually. One of the main advantages of this work compared to other research

in this area is that the authors considered indoor obstacles and furniture; however, the process of

adding nodes around obstacles manually makes the generation of the navigation model slow and

not automated. In addition, the resulting paths are not optimal and appear unrealistic, especially

around obstacles.

Nagy (Nagy, et al. 2017) proposed a concrete methodology by which architects can evaluate and

quantify productive congestion within their architectural designs. First, they generated a traversal

graph with evenly sampled nodes and overlaid it onto the floor plan in a way that it covers the

entire bounding rectangle of the floor plan. They removed any edge of the graph that intersects

with any of the indoor obstacles. Eventually, they connected the start and destination nodes to the

traversal graph and performed a Dijkstra path finding algorithm on it to find the shortest path

between pairs of start and end nodes. After finding the shortest paths between start and end

nodes, all other nodes were labeled based on their level of participation in routes between start

and goal nodes. In order to compute the metric to measure the total amount of congestion and its

distribution through the space, they found the centroid of all nodes, weighted by their dissipated

traversal values, then they connected this centroid value as a node into the analysis graph and

computed the shortest routes from each node with traversal value higher than zero to the centroid

www.manaraa.com

14 | P a g e

node. The authors suggested that the resulting “buzz” metric is the sum of the length of these

routes, weighted by the traversal value of the starting node (Figure 3).

Although their method provides one single number for measuring the productive congestion

inside a building, their method for creating the traversal graph is not efficient and effective.

Hence, the shortest routes they used for measuring the congestion metric are not optimized and

are dissimilar to human movement. Therefore, their analysis results might be different from what

will actually happen in the real world.

Figure 3: Congestion metric equation.

2.3 - Localization and Positioning

Location information related to the pedestrians and goods inside buildings is essential for indoor

PNS. However, gaining spatial data inside a building is a challenging task. A variety of

technologies have been used for positioning, localization, and mapping indoors in the absence of

GNSS (Global Navigation Satellite System aka GPS). However, constraints in accuracy and

coverage, plus expensive infrastructure requirements limit the existing solutions to only a few

successful circumstances (Khoshelham and Zlatanova 2016). This section provides an overview

of some of the most recent developments in sensor technology, and it offers a methodology for

indoor localization and mapping.

There are many different technologies that have been developed recently for indoor positioning,

such as ultrasound, infrared, Wireless Local Area Network, Bluetooth, Radio Frequency

Identification (RFID), and Ultra-Wideband. The RADAR, LANDMARC, and Place Lab techniques

are the most representative of these approaches. However, these schemes involve installation of

additional hardware devices and complicated infrastructures. On the other hand, the

www.manaraa.com

15 | P a g e

development of intelligent mobile terminals (smartphones and tablet computers), provide a

handful of advanced technologies, (Wi-Fi, Bluetooth, and inertial sensors) that can be used for

providing personalized indoor positioning information. The studies mentioned below focus on

solving the indoor localization problem using inertial sensors, accelerometers and gyroscopes,

which are available on most smartphones. The localization approximation in these studies is

mainly based on the Pedestrian Dead Reckoning (PDR) method, which involves step length

calculation using accelerometer data.

Chen (Chen, et al. 2015) developed an indoor positioning system by integrating the WiFi

fingerprinting positioning method with PDR (Pedestrian Dead Reckoning) positioning method.

They invented a new step counting algorithm called “auto-correlation” that “calculates the

number of steps according to the similar acceleration of a pedestrian continuous motion”. This

algorithm reduces the effect of the phone’s position and pedestrian’s movement on the step count

result. The motion of the user is separated to two scenarios: idle, which includes all static states,

like standing up, sitting down, etc., and walking, which happens when body location changes

while the phone is being carried. It also reduces the effect of phone’s position, which is condition

of the phone while being carried (i.e. it is being carried by hand or inside a pocket). In the Wi-Fi

Fingerprinting localization approach, they suggested the K-means clustering algorithm to

decrease the resource cost of the location algorithm and increase the time performance of the

system without changing the localization accuracy. Outcomes of using the algorithm on an

experimental setup indicated that it can reduce the error that instability of Wi-Fi signal creates in

positioning result.

Diaz (Diaz 2015) claimed to present the first inertial step and heading navigation system that

considers vertical displacements without using extra sensors, like barometer, GNSS, Wi-Fi access

points, or having extra information, such as maps. The proposed pocket navigation system

consists of two subsystems, hardware and software. The hardware subsystem consists of a

magnetic and inertial measurement unit (MIMU). The software subsystem has two main parts.

First, the orientation estimation algorithm, which consists of an unscented Kalman filter (UKF),

whose states are the Euler angles roll, pitch and yaw and the biases of the gyroscope, and it utilizes

the accelerometer and magnetometer to correct the orientation estimation. Second, the position

estimator which consists of the step detector, the step length estimator, and the vertical

displacement estimator. The proposed system utilizes the pitch angle in the three main algorithms

of the position estimator. For evaluating the proposed system, it was tested in Deutsches Museum,

which is a well-known museum in Munich. The result of the experiment shows that system has

less than 1% error in detecting vertical displacement of the pedestrian. Eventually, they concluded

www.manaraa.com

16 | P a g e

that using the pitch angle is recommended not only for detecting steps and calculating the length

of it, but also for approximating the height of the steps of the staircase, which leads to estimating

the height of floors. The main disadvantage of this system is lack of an accurate orientation

estimation. Since the pitch and yaw angle directly influence the position estimation, it is required

to count with an accurate orientation estimation algorithm to avoid errors.

Chen (Chen, et al. 2015) proposed a combination of RSS-based localization methods and PDR

localization methods and developed a system that can overcome the drawbacks of each and

provide positioning information with a precision of 1 meter by identifying indoor landmarks. They

presented a WPL (weighted path loss) algorithm that omits the tedious manual process of

collecting a training dataset for the machine learning algorithm used in the Wi-Fi fingerprinting

approach. The WPL algorithm is also more suitable for resource-limited smartphones, since it

does not rely on heavy load machine learning techniques. Therefore, they used the WPL method

to provide accurate information about the initial position of the user. In order to overcome the

accuracy problem of the PDR positioning approach on long distance, the authors leverage the

landmarks, whose positions are known, as new starting points to restart the algorithm when the

pedestrian reaches them. Landmark identification was done using their specific sensor patterns.

They used accelerometer, magnetometer, gyroscope, barometer and Wi-Fi to identify landmarks,

like turns, elevators, escalators, stairs, and doors.

Qian (Qian, et al. 2015) proposed a reliable real-time indoor localization method that uses

inexpensive smartphone inertial sensors by considering the phone in four different conditions

(texting, calling, in-hand, in-pocket), plus indoor vector graphs to address the PDR long range

inaccuracy problem. Their positioning approach consists of three main components. First, the

data preprocessing component, which calibrates, interpolates, and filters the retrieved data from

accelerometer, gyroscope and magnetometer. Second, a PDR component, which calculates the

position of the user by utilizing the output processed data of the first component. Third, the

particle filter component, which is in charge of fusing the ultimate localization results for external

usage by providing feedback data to rectify the step length and heading error from PDR with the

constraint state of an indoor vector graph.

www.manaraa.com

17 | P a g e

3– Theoretical Background

3.1- Architecture Circulation and

Wayfinding

During the architectural design process, architects must pay close attention to movement and

rest, which are concerned with circulation and wayfinding inside a building. Connectivity of

spaces and how people flow through them are important criteria in architectural design. The way

occupants or users of a building move through and interact with the building directly affects their

feeling for the building and what they experience while they move inside it.

Wayfinding relates to the deliberate circulation of individuals and their mental ability to locate

themselves in a setting (Passini 1996). And pathways or circulation routes must have two

properties to be effective. First, they must be clear and unhindered. Second, they must provide

the shortest walk between two points in the space. A good circulation design provides the

possibility for people to move inside the building with ease and efficiency, without disturbing

others, and without the sensation of getting lost. These characteristics are less important in

residential and other small-scale projects that are easily understood. However, in complex

projects like office buildings, commercial centers, healthcare projects, etc. circulation is a critical

aspect of architecture design. In these types of projects inappropriate circulation design can create

problems for occupants and users of the building, and a decent circulation design of the project

can improve various aspects of daily life for occupants as well as the building owners’ economic

goals.

www.manaraa.com

18 | P a g e

3.1.1- Congestion

Congestion is an occupant-level value that has recently drawn the attention of architects, interior

designers and space planers. In most building and urban space layouts, congestion has been

considered as a negative quality. Congestion can cause discomfort and frustration, or even can be

harmful in some situations. For instance, in urban areas with high rates of population and

employment growth, traffic congestion can cause fear and unsafe sensations, which will affect

lifestyles of individuals and threaten a city’s economic success (Abdelgawad, et al. 2011). In

healthcare settings, providing proper health services can be strongly affected by spatial layouts

and patient flow inside the building. It is possible to omit or reduce the cost of alleviating

strategies by predicting the flow patterns of patients and clients inside the hospital and modifying

the circulation layout of the building, if necessary, during the design process of the project

(Johnson and Happ 1977).

3.1.1.1- Productive Congestion and Serendipity

Although congestion is considered to be a negative quality for most architecture spaces, in some

buildings, like knowledge work environments, some level of congestion is beneficial for

increasing the productivity of individuals.

“Knowledge work” as Peter Drucker describes it is the work that happens mainly by mental

activity instead of physical effort (Drucker 1959). This type of activity consists of planning,

investigating, interpreting, developing, and generating products and facilities by utilizing

information and concepts as the raw material, so it is considered as high-level mental activity

(Suchman 2000). Since knowledge work is both cognitive and social, workers require time by

themselves to develop their thoughts and process their thinking to aid their creativity (Claxton

2000). However, to make raw ideas and concepts useful to an organization they must be shared

with others for further advancement. Therefore, conversations and interactions that convey one

person’s thoughts to others are extremely important parts of knowledge work. This transmission

occurs through social networks where individuals come across one another throughout the

normal working day in both official and unofficial settings (Brown and Duguid 2000).

www.manaraa.com

19 | P a g e

Nowadays, the quality that provides the possibility for conversation and interaction in a

knowledge work workplace layout is often called “serendipity”1, which refers to creativity these

days (Lindsay 2013).

In an office, while strongly grouped teams do well at solving problems in their knowledge work,

they lack the connections to identify complementary thoughts from other groups or other parts of

the company. Hence, unintended face-to-face conversations among people with various sets of

skills and expertise might generate new ideas and solutions or at the least, increase solidarity

between staff in the workplace.

Large companies have begun to realize this value and have begun looking for new ways to

encourage interaction among employees from different departments that do not regularly work

together. This interest, in combination with the increasing interest in algorithmic solutions and

analysis in design is leading architecture firms that design workplaces to take a scientific approach

to analyze office floor plans, compute the likelihood that employees will meet inadvertently, and

identify the spots that these congestions occur. These scientific analyses provide the possibility

for architects to increase the serendipity value of their design and decide on the best places for

deploying amenities inside the building to maximize casual conversations between employees.

For instance, when NBBJ architects designed the new Google headquarters building in ??, they

did so in a way that facilitates the staff’s collaboration and bumping into each other. They analyzed

how fast people can flow inside the building by measuring the diameter of the space from various

angles. They also made the floor plan narrower than in regular office buildings to reduce the

distance between various teams (Silverman 2013).

3.1.1.2- Wayfinding in Existing Buildings

As mentioned before, one of the major issues that inappropriate circulation and wayfinding design

will cause is difficult wayfinding. People avoid putting themselves in a setting in which they feel

they will get lost. This is even worse for people with physical impairments. The sensation of being

1 The British noble Horace Walpole invented the term in a 1754 letter in which he used the term referring
to inadvertent finding.

www.manaraa.com

20 | P a g e

lost in an architectural space creates a psychological barrier that stops people from going to

buildings with complex circulation. Since most public buildings like shopping malls, commercial

centers, hospitals, etc. are complicated buildings, the barrier that difficult wayfinding creates

around them can be extremely harmful to the main functionality of these buildings and can

threaten the economic goals of their owners.

Although most architectural firms realize the importance of appropriate circulation and

wayfinding and try to improve these aspects of their future projects by doing scientific analysis,

many public buildings with complicated circulation already exist in cities around the world.

Wayfinding can be extremely difficult in them, and people do get lost in these complex public

settings regularly. Modifying these buildings’ layouts is either extremely expensive, or not

practical in most cases. Addressing the problem by adding graphic displays and signs to interior

components of the buildings is considered a poor work-around, and often conflicts with the

interior architecture of the building and may still prove hard to interpret. These signage solutions

are also very little help to people with sensory disabilities. Therefore, providing personal mobile

wayfinding assistance for users of these settings by utilizing artificial intelligence might be the

answer to difficult wayfinding issues in existing complex public buildings.

3.1.1.3- Circulation and Emergency Evacuation

There is no denying that more sensitive design of buildings is crucial for reducing the casualties

during disasters. Although many buildings never actually experience a serious disaster,

considerations for emergency evacuation is extremely important part of the building design

process, especially circulation design. Although much legislation and many regulations that direct

egress design are provided in building codes, evaluating the actual performance of the building

during egress is extremely difficult. Apart from that, a great portion of disaster regulations are

associated with providing a safe escape route in the case of hazard while in many conditions that

is not sufficient to guarantee safe evacuation of the building. For instance, in large occupancy

buildings like office blocks, shopping malls, hospitals, department stores, etc., where many people

evacuate the building during disaster, some individuals may obstruct the evacuation of others due

to high level of congestion. The effect of traffic and congestion in the escape route during

www.manaraa.com

21 | P a g e

emergency egress can be more dangerous than the disaster itself when large numbers of people

are involved (Canter 1980).

Time is the most important parameter for pedestrians when the decision to leave the building has

been made due to disaster. All their activities from this point is toward one goal: escape.

Experiential data shows that main reason of casualties during an emergency egress is usually

angst an impulsive behavior of the crowd under panic instead of disaster itself. On the other hand,

there are three specific factors affecting the time required for an individual’s egress (Canter 1980):

1- Individual’s confusion in choosing the exit paths.

2- Length of the exit path.

3- Individuals traffic during evacuation and extensive queue of people in the bottlenecks.

Since all three factors are directly related to circulation design of the building, it is safe to say that,

a toolkit that evaluates emergency evacuation of a floor plan during the design process and

provides insights about congested areas and individuals’ traffic would be extremely helpful in

reducing the casualties experienced during a disaster.

3.2- Problem Space, Grids and Graphs

The main requirement of a pathfinding algorithm is a topological model that defines relations

between spaces and discriminates walkable places from obstacles and walls. The problem-space

model is the environment in which a search operates (Newell and Simon 1972). It consists of a set

of states of the problem, and a set of operators that change the state. Generally, two types of

topological models are being used in a pathfinding process: a graph or a grid. Both of these models

contain nodes representing locations in the space and edges that defines connections between

nodes. Two steps are required for generating a graph: First, a set of nodes must be defined that

represent location in space or cells of space. Secondly, connections of the nodes must be defined

(Figure 4).

 A raster model is a grid that can be considered a geometrical and topological model at the same

time (Figure 5). Every node of the grid has between four to eight neighbors. While nodes of the

www.manaraa.com

22 | P a g e

grid represent the occupiable positions in the space, edges of the grid that connect nodes to their

neighbors determine the connectivity of nodes within the model and represent possible paths for

going from one node to another.

The main difference between a grid and a graph is the number of connections between nodes in

each of them. While each node of a graph can have various number of connections, grid nodes are

only connected to their closest neighbors.

Figure 4: Graph.

Figure 5: Grid.

www.manaraa.com

23 | P a g e

3.2.1- Static and Dynamic Model

A model in which a path is computed might be dynamic or static. A static model does not change

over time, whereas a dynamic model might alter over time. For computing paths in changing

environments, dynamic models are required. One example of pathfinding in changing

environments is navigation of discovery robots that search the surface of other planets like the

Moon or the Mars, where the landscape is constantly changing. Another example of application

of dynamic models is navigation during emergency evacuation, where parts of floor plan might be

inaccessible due to fire or debris. Due to the lack of reliable information, and unanticipated

changes happening on the landscape of other planets, discovery robots use dynamic models that

are constantly being updated based on the robot’s received data from the environment for

pathfinding purposes.

3.2.2- Single Agent or Multi Agent

Pathfinding can be done for a single or for multi agents (i.e. simulated agents, robots, or people).

Regularly, a static model is required for pathfinding for single agent. However, finding a path for

multiple agents requires a dynamic model. Each agent’s volume has to be included in the

pathfinding calculations since agents should not collide with each other. Apart from that,

pathfinding methods used for finding routes for an agent are not practical and efficient enough to

do for hundreds of actors at the same time. Multi-agent pathfinding requires extreme

computational power, so a real-time solution might not exist. Therefore, wayfinding for multiple

agents needs a different method, like dynamic agent-based crowd simulation.

www.manaraa.com

24 | P a g e

3.3- Pathfinding and Artificial

Intelligence

Search is a universal solution finding mechanism in artificial intelligence (AI). One of the

characteristics that discriminates AI search algorithms from other graph-searching algorithms is

the size of the involved graph. For instance, the graph representing the entire chess game is

approximated to have more than 1040 nodes, so finding a solution in this graph with traditional

search method, which checks all the possible solutions would take millions of years. Consequently,

the problem-space graphs of AI problems are never represented by listing each state, but rather

are represented by identifying an initial state and a set of operators to generate new states from

existing ones.

The sequence of steps required for finding the solution is not known in AI problems theoretically,

and they must be determined by a trial-and-error inquiry of alternatives. AI search algorithms are

used to address three generic classes of problems frequently: single-agent pathfinding problems,

game playing, and constraint satisfaction problems (Korf, Artificial intelligence search algorithms

2010). This section provides fundamentals of search algorithms and explains some of the basic

algorithms in more detail.

3.3.1- Brute-Force Search

Brute-force searches are the most generic search algorithms, because they do not require any

specific domain knowledge. A search environment state description, a set of legal operators, an

initial state, and a description of the desired solution are all that a brute-force search requires.

The most famous brute-force search methods are breadth-first, uniform-cost, depth-first, depth-

first iterative-deepening, bidirectional, and frontier search.

It is worth mentioning here that, in the upcoming text, to generate a node means to create the

data structure corresponding to that node, while to expand a node means to generate all the

children of that node.

www.manaraa.com

25 | P a g e

3.3.1.1- Breadth-First Search

Breadth-First search (BFS) is an algorithm for searching decision tree or graph data structures

invented by Konrad Zuse in 1945. BFS expands nodes in order of their depth from the root and

generates one level of the tree at a time until it finds a solution (Figure 6). The easiest way to

implement it is by maintaining a first-in-first out queue of nodes, that contains just the root at

the beginning, and always removes the node at the head of the queue and expands by adding the

roots’ children to the tail of the queue.

Since it always generates a node in the tree after all deeper nodes have been generated, the result

of the breath-first search is always the shortest path to a goal. The time consumed by the algorithm

is proportional to the number of nodes generated, which is a function of the branching factor b

and solution depth d, since each node can be generated in constant time. In other words, to find

the nodes that are at the distance d from the root or start node (measured in number of edge

traversals), BFS takes O (𝑏𝑑+1) time and memory.

The huge memory required for BFS is the main disadvantage of the algorithm. The amount of

consumed memory is proportional to the number of nodes stored, and the algorithm needs to

store each level of the tree in order to generate the next level. As a result, BFS will exhaust the

memory available quickly, and does not have many practical applications (Korf, Artificial

intelligence search algorithms 2010).

www.manaraa.com

26 | P a g e

Figure 6: Sequence of generated nodes by breadth-first search algorithm.

3.3.1.2- Uniform-Cost Search

In a graph, if all the edges have same costs, then breadth-first search generalizes to uniform-cost

search. Uniform-cost search expands nodes based on their cost from the root or initial state as a

replacement for their depth from it. At each step, the node with lowest cost g(n) will be expanded,

where g(n) is the sum of the edge costs from the root to node n. The best data structure for keeping

the nodes is a priority queue. This algorithm is analogous to Dijkstra’s shortest path algorithm.

The main difference of the two algorithms is that uniform-cost search stops when a goal node is

selected for expansion, while Dijkstra only stops the search when every node in a finite graph has

been expanded.

Every time a node is chosen to be expanded by uniform-cost search, a lowest-cost path to that

node has been found. Time complexity of uniform-cost search is O (𝑏𝑐/𝑒), where c is the cost of an

optimal solution, and e is the edge with minimum cost. The main disadvantage of uniform-cost

search like breadth-first search is memory limitation. Since the algorithm stores each level of tree

in order to generate the next level, the memory consumption is proportional to the number of

stored nodes.

3.3.1.3- Depth-First Search

Similar to BFS, depth-first search (DFS) is an algorithm for traversing tree or graph data

structures. DFS overcomes the space limitation of BFS by always generating next a child of the

deepest unexpanded node (Figure 7). A list of unexpanded nodes is required for DFS, like BFS,

however, in contrast to BFS that manages the list as a first-in first-out queue, DFS treats the list

as a last-in first-out stack.

www.manaraa.com

27 | P a g e

Figure 7: Sequence of generated nodes by depth-first search.

The main advantage of depth-first search is that its memory requirement has linear relationship

to the maximum of search depth, as opposed to exponential relationship of breadth-first search.

That is because DFS only stores a stack of nodes on the path from the root to the current node.

The time complexity of a depth-first search to depth d is O (𝑏𝑑). Therefore, DFS is time-limited

rather than memory-limited.

The main drawback of DFS is that it may not terminate on an infinite tree, but simply go down

the left-most path forever. This is due to the usage of last-in-first-out stack, where the left most

branch can be extended infinitely by generating an infinite number of duplicate nodes. The

common solution for this problem is to impose a cutoff depth on the search. While the perfect

cutoff is the depth of the solution d, this value is unknown in most of the advanced problems.

Hence, if the selected cutoff depth is less than d, search will be unsuccessful, and no solution will

be found, whereas if the cutoff depth is greater than d, execution time will be increased

dramatically, and the first solution found may not be an optimal one (Korf, Artificial intelligence

search algorithms 2010).

3.3.2- Heuristic Search

Solving more complex problems requires domain-specific knowledge to increase search

efficiency. There are two definitions for heuristic search in artificial intelligence. First, in a general

www.manaraa.com

28 | P a g e

sense, the term heuristic is used for any effective advice that is not guaranteed to work in every

case. Second, a more specialized technical meaning, which refers to the specific case of a heuristic

evaluation function.

3.3.3- Heuristic Evaluation Functions

A heuristic evaluation function approximates the cost of an optimum route between a pair of

states in a single-agent wayfinding problem. For a static destination state, a heuristic evaluation

h(n) is a function of a node n that guesses the distance between node n and the destination state.

For instance, in order to estimate the distance of a pair of locations on a highway, Euclidean or

airline distance is used. Or Manhattan distance is the heuristic function for solving sliding-tile

puzzles, which can be computed by counting the number of moves along the grid that are required

to go from one tile to another and adding them together.

The heuristic evaluation function must have two key characteristics. It must approximate the

actual cost of each state change, and it has to be efficiently computable in constant time. For

example, calculating Manhattan distance between two points is “constant time” similar to

Euclidean distance, but calculating Manhattan distance between two states of a tiling puzzle is

proportional to the number of tiles.

Most heuristic functions solve a simplified version of the problem, then utilize the cost of an

optimal solution of the simplified problem as a heuristic evaluation function for the original

problem. For example, a simplified version of the highway problem removes the constraint of

driving on roads and navigates instead from one location to another by helicopter; the cost of an

optimal solution of this simplified version is the Euclidean distance. In the sliding-tile puzzles

example, removing the constraint that a tile can only slide into the blank position will simplify the

problem. The Manhattan distance is the optimal number of moves required to solve this simplified

version of the problem.

It is safe to say that such heuristics supply the lower bounds on the costs of optimum solutions to

the original problem, because they result from simplification of the beginning problem. For

instance, in the highway problem, the shortest possible path between two locations is the length

of a straight line between them, which is the Euclidean distance between them. Similarly, the

www.manaraa.com

29 | P a g e

Manhattan distance is a lower bound on the actual number of necessary steps required to solve

an instance of a sliding-tile puzzle, because all tiles must move at least as many times as its

Manhattan distance to its goal position.

3.3.4- Fundamental Pathfinding Algorithms

Many algorithms utilize heuristic evaluations, like a pure heuristic search and the A* algorithm,

which are the fundamental to most of the sophisticated heuristic search algorithms. There are also

other basic search algorithms that use heuristic evaluation, like depth-first branch-and-bound,

the heuristic path algorithm, recursive best-first search. This section provides more detailed

explanation of the pure heuristic search algorithm and the A* algorithm.

3.3.4.1- Pure Heuristic Search

The pure heuristic search algorithm is the simplest heuristic algorithm; it expands nodes based

on their heuristic value h(n) (Doran and Michie 1966). It maintains a closed list, which keeps

nodes that have been expanded, and an open list of those nodes that have been generated but not

expanded yet. At the beginning, the algorithm keeps the start node in the open list. At each step,

the algorithm expands the node with lowest h(n) value in the open list, and generates all of its

children, and inserts it into the closed list. After applying the heuristic function to the generated

children, they will be placed inside the open list based on their heuristic value. This process will

be continued until the destination node is chosen for expansion.

The algorithm generates multiple paths to the same node in a graph with cycles and the first path

found might not be the optimal one. The algorithm will discard the suboptimal path when it finds

a shorter path. The main disadvantage of a pure heuristic search is that it is not guaranteed to find

the optimal solution, because it does not take the cost of the path all the way to node n into the

calculations.

www.manaraa.com

30 | P a g e

3.3.4.2- A* Algorithm

The A* algorithm is the basis of many modern pathfinding algorithms (the family of “*”

algorithms) and the most well-knowns. It was developed by Hart, Nilsson, and Raphael in 1968

(Hart, Nilsson and Raphael 1968). They combined features of uniform-cost search and pure

heuristic search to find the optimal solution more efficiently. A* associates a cost function with a

node. The cost function of node n is f(n) = g(n) + h(n), where g(n) is the cost of the path from the

start node to node n, and h(n) is the heuristic approximation of the cost of traveling from node n

to the goal node. At each step the node with lowest f value is selected to be expanded, and the

previous node will be considered as parent of the current node. If the f values of several nodes are

similar, the node with lowest h value will be chosen for expansion. This process continues until

the destination node is chosen for expansion. Eventually, path generation occurs by recursively

following the parent pointers from destination node to start node.

A* finds an optimal path to the destination without overestimating the actual cost (h(n) must be

admissible). For instance, the Euclidean distance never overvalues the real highway distance, and

the Manhattan distance never overestimates the actual moves in the sliding-tile puzzles. By using

these evaluation functions, A* can find the optimal solution to those problems (Hart, Nilsson and

Raphael 1968).

The main drawback of A*, like other best-first search algorithms, is the amount of memory

required for the algorithm to operate, since the open and closed lists are stored in memory. A* is

extremely space-limited in practice and will exhaust the available memory quickly. In addition,

the process of managing the open and closed lists is computationally complicated and time

consuming, which reduces the speed of A*.

Accuracy of the heuristic function establishes the time complexity of a heuristic search algorithm.

Therefore, A* operates on linear time if the heuristic evaluation function is an accurate estimator

and expands only the nodes on an optimal solution path. Contrarily, A* operates similar to a

brute-force uniform-cost search, and the time complexity becomes exponential if the heuristic

function returns zero for every node. Generally, it is possible to reduce the effective depth of

search by defining a good heuristic function (Korf, Reid and Edelkampz, Time complexity of

iterative-deepening-A∗ 2001).

www.manaraa.com

31 | P a g e

3.3.4.3- AP-Theta* Algorithm

As mentioned before, the A* algorithm quickly finds paths that are constrained to the grid edges.

However, these paths are not the optimum paths, because possible headings of the paths are

artificially limited to multiples of 45 degrees (Figure 8) (Yap 2002). In addition, limited headings

make generated routes unrealistic in appearance, which is not appropriate for simulating human’s

pathfinding behavior (Figure 9).

Figure 8: Limited headings of the generated path by A* algorithm.

www.manaraa.com

32 | P a g e

Figure 9: Sub-optimal and unrealistic path generated by A* algorithm.

In order to overcome A* algorithm’s drawbacks, any-angle path planning was introduced (Nash,

et al. 2007). AP-Theta*, or Angle-Propagation Theta* is a variant of the A* algorithm that

generates routes without limiting the headings by propagating information along grid edges (to

achieve a short runtime).

The AP-Theta* algorithm is built upon the A* algorithm; the main difference between them is that

in AP-Theta* the parent of a node can be any vertex, in contrast to A* where the parent must be

one of the eight neighbor nodes of the vertex. AP-Theta* calculates two extra values beside cost

value g(n) and heuristic value h(n) for each node of the grid: a lower angle limit lb(n) and an upper

angle limit ub(n). These two extra values create the angle range property of each node [lb(n),

ub(n)]. Angle range property will be used to determine whether or not two nodes can be connected

by line-of-sight.

A simple analogy for a line-of-sight test between nodes is putting a lamp on top of a node. Light

cannot pass through blocked cells, so all the nodes that are not located in the shadow of blocked

cells have line-of-sight to the node under the lamp. It is possible to identify the nodes with line-

of-sight to the lamp-node using the angle range property of the lamp-node. Angle range is

calculable using two light rays emitted from the lamp. Figure 10 illustrates line-of-sight test of

node S. All the nodes in the yellow area defined by the angle range property [𝜃1, 𝜃2] have line-of-

sight to vertex S. The angle range of each node will be calculated and propagated along grid edges

www.manaraa.com

33 | P a g e

at the time of expansion of the node by AP-Theta*. This process results in a constant runtime per

node expansion, because both line-of-sight test and angle range propagation occur in constant

time.

Figure 10: Line-of-sight test of node S.

As mentioned above, AP-Theta* calculates one additional property, named “angle range,” which

consist of a lower angle bound and an upper angle bound for each node. This property is related

to heading rays from the parent of node S to the node itself measured in degrees. A visible

neighbor of node S has line-of-sight to node S if (but not necessarily only if) the angle between the

ray from the parent of node S to the visible neighbor of node S, and the ray from the parent of

node S to node S is contained in the angle range of node S.

In order to define the angle range property of node S, it is required to define Θ (S, P, X), which

gives the algorithm its name. If node P is the parent of node S and node X is its successor, Θ (S, P,

X) indicates ∠ (S, P, X) which is limited to between 180° and -180°. This angle is positive if the ray

from P to X is counterclockwise from the ray connecting P to S, and it is negative if the ray from

P to X is clockwise from the ray connecting P to S. AP-Theta* constrains the angle range of each

node before expanding it, based on the blocked cells adjacent to the node and successors of the

www.manaraa.com

34 | P a g e

node. Then the algorithm checks the following condition: for successor X of node S, if lb(S) ≤ Θ

(S, P, S ́) ≤ ub(S) then X has line-of-sight to parent node of S.

For example, in Figure 11 where A4 is parent node of C3, the lower bound of node C3 is

∡(𝐵3, 𝐴4, 𝐶3) equal to -18° and upper bound of C3 is ∡(𝐶4, 𝐴4, 𝐶3) equal to 27°. Therefore, all the

neighbors of C3 that pass the line-of-sight condition are guaranteed to have line-of-sight to parent

of C3 which is A4.

Figure 11: Maintaining angle range of node S.

Figure 12 illustrates the paths generated by both Theta* and A* algorithms from node A4 to node

C1. Since in A* algorithm parents and successors have to be neighbors, the sequence of parent and

successor nodes in the generated path, which is shown by red line from goal node to start node is:

C1C2B3A4. On the other hand, Theta* maintains the angle range of each node before

expansion. In the generated path by Theta*, which is illustrated by the blue line, node B3, which

is the parent of node C2 has line-of-sight to node C1, so it will be assigned as the parent node of

C1. Consequently, the sequence of parent and successor nodes in the generated path by Theta* is:

C1B3A4. Comparing routes generated in this simple example indicates that, not only is the

route generated by Theta* shorter than the one generated by A*, but also it is more realistic

looking.

www.manaraa.com

35 | P a g e

Figure 12: Generated path by Theta* (blue), and A* (red).

3.4- Indoor Localization

Tracking a user’s location with high precision in urban and indoor environments has a variety of

applications in the healthcare, logistics, and entertainment industries since GPS service can be

either blocked or adversely affected by multipath propagation in such environments.

A variety of methods has been proposed for providing functional pedestrian tracking services with

less than a few meters error by utilizing various technologies as mentioned previously. This

chapter provides more detailed explanations about the method used in this research to track a

user’s location and movements dynamically.

3.4.1- Dead Reckoning

The term “dead reckoning” (DR) describes a position solution that is gained by calculating

movements from a known starting point based on the motion of the user. It was originally a simple

www.manaraa.com

36 | P a g e

navigation method that served European mariners for centuries. Starting at a known or assumed

position, they tracked three parameters utilizing simple but reliable instruments:

• The ship’s compass heading.

• The speed of the ship.

• The time spent on each heading and at each speed.

The navigators were able to calculate the route and distance the ship had moved and mark a sea

chart, if he had one. This method was used by Columbus and most other mariners of the Age of

Exploration (Reckoning 2018).

A simple device for use in pedestrian dead reckoning (PDR) is the pedometer, which usually is an

electronic device that counts the number of steps that the user takes by detecting the motion of

person’s hand or hips. It can be used to calculate distance but not direction.

The ubiquity of accurate and cheap sensors, including the accelerometers, gyroscopes, and

magnetometers found in smartphones these days, has reinvigorated interest in DR for pedestrian

navigation in environments where other navigation systems are unavailable.

3.4.1.1- Accelerometer

An accelerometer is an instrument capable of measuring the proper or physical acceleration

experienced by an object (Tinder 2007). Proper acceleration is the velocity change rate of a body

in its instantaneous rest frame (Rindler 2013), and it is different from coordinate acceleration,

which is acceleration in a static coordinate system. A static accelerometer on the Earth’s surface

will show approximately 9.81 m/𝑠2 upward since any point on the earth surface is accelerating

upwards relative to the local inertial frame (due to gravity). Theoretically, an accelerometer is a

damped mass on one or more springs. When the system experiences an acceleration, the mass

pushes on a calibrated spring to the extent that the spring can accelerate the mass at the same rate

as the initial acceleration (Figure 13). The dislocation of the mass is then measured to calculate

the acceleration. Modern accelerometers are often small micro electro-mechanical systems

(MEMS) that consist of little more than a cantilever beam with a proof mass (seismic mass).

www.manaraa.com

37 | P a g e

Sensors incorporating three such devices oriented at right-angles to each other are able to

measure acceleration in all three spatial directions at the same time.

Figure 13: Schematic structure of accelerometer.

3.4.1.2- Magnetometer

Magnetometer is a device capable of measuring the strength (in unite of Gauss) and direction of

the local magnetic field. The simplest type of magnetometer is the traditional compass (Figure 14)

consisting of a magnetized needle, which changes orientation based on the earth’s magnetic field

and shows the direction of the field.

www.manaraa.com

38 | P a g e

Figure 14: Traditional compass (Mizaralkora 2017).

Since electronic magnetometers have become extremely cheap, most modern smartphones

contain a Tri-axis electronic magnetometer, which measures the strength of the magnetic field

and acts as a compass (Magnetometer 2018). The sensor uses the Earth’s magnetic field as a

reference to discover the phone’s orientation along x-, y-, and z-axes. Fortunately, Tri-axis

magnetometers are not affected by orientation or elevation. “Otherwise users would have to hold

the phone precisely parallel to the ground or in some other position that may not correspond to

how they normally use it,” according to Mark Laich, vice president of worldwide sales at Memsic,

a maker of electronic compasses based in Andover, Massachusetts (Jones 2010).

3.4.1.3- Gyroscope

A gyroscope measures and maintains orientation and angular velocity. It consists of a wheel or

disc that spins while the rotation axis is free to assume any orientation (Figure 15). During

www.manaraa.com

39 | P a g e

rotation, the rotation axis is not affected by sloping or rotation of the mounting because of the

conservation of angular momentum (Worthington 1906). Due to their precision, gyroscopes have

a variety of applications in science and practice. For instance, they are included in the inertial

navigation system of Hubble telescope. Also, it is possible to build gyrocompasses, which can be

added to, or replace magnetic compasses in transportation vehicles as part of an inertial guidance

system. Gyroscopes have captured the attention of many designers who have integrated them into

modern technologies like smartphones, game consoles, and virtual reality sets in the last decade,

since they provide the possibility of calculating orientation and rotation (Gyroscope 2018).

Figure 15: Gyroscope schematic structure (Gyroscope 2018).

It is possible to utilize a gyroscope as a heading indicator. This type of gyroscope is called a

directional gyroscope. It has a horizontally set axis of rotation, pointing north instead of seeking

north similar to magnetic compass. Their main drawback is that, when being used, it slowly drifts

away from north, and it is required to use a magnetic compass to reorient them periodically

(Feynman, Gottlieb and Leighton 2013).

www.manaraa.com

40 | P a g e

4- Methodology

These days, computational and algorithmic tools are being used to improve various aspects of

architecture design by simulating real world events before their occurrence using the digital world

of computers. The results of these simulations not only demonstrate how the building will perform

after construction, but also provide insights about the effect of various design changes on the

performance of the building. The only other way for accessing such information is by empirical

experiments, which are extremely costly, and their results might not repeat on future scenarios.

For instance, architecture firms are using daylight simulation programs like Diva or Insight360

to evaluate the performance of their designs based on the amount of natural daylight it receives.

Circulation design, as one of the most important aspects of architecture design process, can

benefit from these digital simulation tools since inappropriate and complex circulation design

may affect functionality of the building on various levels and buildings with proper circulation

improve the human experience inside the space. For instance, in a well-designed building,

individuals would spend less time interpreting the direction information shown by graphical signs

or given by staff inside a building, eliminating some of the efficiency problems of the building. In

addition, suitable circulation design may affect the level of congestion, which is one of the most

important occupant-level spatial qualities inside the space. While appropriate circulation design

may cause serendipitous congestion in some building layouts, unsuitable circulation may cause

discomfort sensation for occupants of other building layouts. Apart from that, individuals,

especially the ones with sensory impairments tend not to attend buildings with complex

circulation, since they get the fearsome sensation of being lost in those settings. Furthermore,

occupant safety of a building is extremely affected by the wayfinding design of that building. Not

only it is much more problematic for occupants to evacuate buildings with complicated circulation

during emergency situations, but first responders have a harder time providing their services in

those buildings. Moreover, analyzing and evaluating designed floorplan of a building based on the

codes and standards related to circulation, accessibility, and safety provide important insights

and information for designers and building owners who pursue Living Building Certification.

However, digital tools that simulate human behavior and human experience inside the built

environment are extremely rare and expensive. FlexSim for example, is a very sophisticated

simulation tool that costs tens of thousands of dollars per year.

www.manaraa.com

41 | P a g e

Beside all the benefits that digital tools might provide for circulation and wayfinding design

during architecture design process, they also may improve utilization of the existing buildings

with complex circulation by providing navigation assistance for the occupants similar to outdoor

PNS. However, due to challenges in the way of developing digital indoor navigation assistance,

like unavailability of GPS signals inside buildings, absence of appropriate maps, which designate

the position of the obstacles, routes, walls, plus destination inside a building, and complexity of

indoor environment and freedom of individuals’ motion inside the building, indoor pedestrian

navigation systems have not been developed adequately.

In order to improve circulation design process of a building and provide insights about human

wayfinding behavior, which is one of the goals of this research, an open source toolkit for the

Rhino/Grasshopper platform was developed based on heuristic search algorithm (AP-Theta*). In

addition, an IOS smartphone application was developed utilizing the same algorithm to provide

indoor navigation assistance for users of complex buildings.

4.1- Workflow

The strategy taken for developing the toolkit in this research required choosing a workflow for

connecting the regular architectural design documents of a building to the analysis toolkit, since

different firms use various methods and software programs in their design process. Apart from

that, it was decided that toolkit must be as easy as possible to use by automating most of the

process.

Although architecture firms have various workflows in design process, most of them use Revit, a

BIM software developed by Autodesk for developing their design after concept development stage

of the design. In addition, BIM models contain more information (semantic) related to the design

than CAD drawings which usually only contain geometrical information of the design. Therefore,

Revit was chosen as the starting point of the workflow, meaning that designed floor plans will be

extracted from Revit model for analyzing and evaluating.

On the other hand, Rhino is a popular software for analyzing and evaluating various aspects of

the architectural design, since geometrical manipulations are easy in Rhino environment. Apart

www.manaraa.com

42 | P a g e

from that, the existence of Grasshopper, which is a visual programming environment in Rhino,

provides the possibility for developing various analysis tools that are directly involved with the

geometry and information of the design. Consequently, Rhino\Grasshopper platform was

selected as the end-point of the workflow, meaning that wayfinding package will be developed as

Grasshopper plugin and circulation analysis prototypes will be developed in Rhino\Grasshopper

environment. On the other hand, iOS was chosen as the final platform for developing the indoor

pedestrian navigation system.

4.1.1- Data Transfer

The fundamental requirement for developing the wayfinding package on a floorplan is identifying

the walkable spaces of the floorplan. Fortunately, this information is part of almost every

professionally made Revit model. Room-Data is a property of each space in each floor of the

model in Revit, which highlights the boundaries of different spaces in Revit. Figure 16 presents a

floorplan in Revit that contains Room-Data for all the walkable spaces of that specific floor with

distinct colors. Therefore, the main requirement of data transformation process on the Revit side,

is to transfer Room-Data along with the reset of the floorplan.

www.manaraa.com

43 | P a g e

Figure 16: Room-Data in Revit floorplan.

It is possible to export data from Revit in many different formats. For example, FBX is the format

that captures geometry, material, and organization of objects (layers) more completely than other

formats. Accordingly, it is the best format for transferring 3D models between Revit and other

modeling software, specifically other Autodesk products. However, FBX is not a decent format for

transforming 2D information of a floorplan, since Room-Data is not included in it. In contrast to

FBX, DWG and DXF are the formats that capture most of the 2D information, like room data, or

material hatches in plan, but they operate poorly in transferring 3D information.

Since the wayfinding package requires a data-rich 2D floorplan, which contains information

related to the position of the walls, furniture, and room-data, DWG was selected as the transfer

format for this project. Figure 17 illustrates the floorplan of Figure 16 in Rhino environment after

transferring from Revit as DWG format. In this transfer Revit encodes Room-Data as a hatched

polygon object that, as Figure 17 shows, includes the full floor area, ignoring the location of

furniture and other objects (cabinets, sink, toilet, etc.) that would actually reduce the walkable

floor area.

www.manaraa.com

44 | P a g e

Figure 17: Room-Data in Rhino as Hatch object.

4.2- Extracting the Navigation Model

As mentioned before, most of the top heuristic pathfinding algorithms require a navigation grid

to operate on, consisting of nodes that represent locations and edges that connect the location

nodes inside the space together. The navigation grid, which is called navigation model in the

literature must discriminate walkable space from obstacles in any landscape (outdoor, indoor, or

other planet). Therefore, there are two types of nodes in the navigation model:

1- Location nodes, which are walkable.

2- Wall nodes, which are unwalkable.

www.manaraa.com

45 | P a g e

Consequently, the first step in developing the floorplan pathfinding package is the generation of

the navigation model on top of the floorplan in the Rhino environment. In addition, the model

generation process must be as automatic as possible to be useful, since generating the model

manually on top of large floorplans is extremely tedious and time consuming.

Considering all the required features of the navigation model, a Grasshopper script was designed

to generate the model on top of any floorplan that contains Room-Data in Rhino as Hatch object.

The script is composed of several 2D geometrical operations that will be demonstrated one by

one.

Step 1: importing Room-Data into Grasshopper. The only manual operation of the

navigation model generation process is transferring Hatch object to Grasshopper. Unfortunately,

Hatch objects are not recognized by Grasshopper. Thus, they must be converted into another

geometry type. As Figure 18 shows, Rhino changes a Hatch object to an identical Brep (boundary

representation) to the initial Hatch if user explodes the Hatch. Since Brep is a data type recognized

by Grasshopper, the first step of navigation model generation is to change hatches representing

the Room-Data to Brep by exploding them and import the Breps into Grasshopper.

Figure 18: Changing hatch to Brep by explode operation in Rhino.

Step 2: Generating the context. Once the Breps were imported into Grasshopper, it is

required to generate the context of the navigation model. Context model is a square surface that

covers all the Breps. Simply put, it is the bounding box of all the Breps, which was scaled in the

www.manaraa.com

46 | P a g e

direction of the shorter edge to become a square with edges length equal to longer edge length of

bounding box (Figure 19).

Figure 19: Process of generating Context of the navigation model.

Step 3: Raw-grid generation. The second geometrical operation in creating the navigation

model is generating the navigation grid inside the context model. Grid size must be selected based

on the complexity of the floorplan. For instance, complex floorplans with many furniture items in

them require smaller grid size than free floorplans with no furniture in them. The recommended

range for grid size is between 8” to 24”, since human cannot pass bottlenecks narrower than 8’

and grid cells bigger than 24” will make the navigation model excessively abstract (Figure 20). A

two-dimensional matrix was utilized for storing the grid cells.

www.manaraa.com

47 | P a g e

Figure 20: 8” raw-navigation grid inside the context model.

Step 4: Discriminating the search area. To discriminate grid cells that are walkable from

the unwalkable ones and wall-cells, a test was designed for each of the cells. First, every edge of

each cell was divided to 7 equal segments by 8 points. Simply put, each cell now contains 32 points

equally distributed on its four edges. Next, the distance between each one of these 32 points and

their closest points on each Brep was calculated and added together. This operation will provide

one number for each cell. If the number is equal to zero, then all 32 points of the cell are

guaranteed to be located on top of at least one Brep, which means that cell is walkable and part of

the search area. If the number is bigger than zero, then at least one of the 32 points of the cell is

outside the walkable area, so the cell is considered as unwalkable (a wall-cell). This method

distinguishes not only walkable cells and wall-cells, but also creates a buffer about the size of one

cell around walls and obstacles, which makes the navigation model more realistic, since it is

unlikely that people will walk clinging to the walls or furniture inside a space. Eventually, results

of the test for each cell was stored as zeros and ones (one for wall-cells and zero for walkable cells)

in a two-dimensional matrix associated with the position of that cell in the matrix of the cells.

Figure 21 illustrates the final navigation model generated in Grasshopper. Walkable cells are

www.manaraa.com

48 | P a g e

illustrated in green while wall-cells are shown in orange and red. Orange cells are the offset cells

around walls and furniture, which like red cells are not walkable.

Figure 21: Final navigation model. Zeros illustrates walkable cells (Search area) and ones illustrates wall-cells.

4.3- Data Structure and Methods

In order to develop the pathfinding package, I decided to use C# programming language, which

proved to be most effective, since Grasshopper has been developed with this language. Therefore,

www.manaraa.com

49 | P a g e

Microsoft Visual Studio 2015 was used as the programming platform for developing the

wayfinding package for Grasshopper.

4.3.1- Data Structure

Since C# is an object-oriented programming language, the wayfinding package uses an object-

oriented format. Object-oriented programing or OOP is a programming model based on the

concept of objects, which may contain data in the form of attributes, and code in the form of

procedures or methods. In OOP, computer programs are designed based on instances of defined

objects that interact with one another.

Since the AP-Theta* algorithm discriminates nodes from cells and uses them separately to

calculate the angle range for each node. Two types of objects for storing the whole navigation

model:

1- Spot object type.

2- Cell object type.

 Although each of these data objects has its own attributes and methods, they are also interwoven,

since one of the attributes of the Spot object is a list of adjacent Cell objects. Similarly, one of a

Cell object’s attributes is a list of Spot objects representing the four corner Spots of the Cell.

4.3.1.1- Spot Object Attributes

The Spot object was designed to store and represent nodes of the navigation model. Therefore, its

attributes and methods were defined based on the requirement of AP-Theta* algorithm.

Spot objects have to be comparable, since AP-Theta* needs to compare each Spot instance to

another one based on the heuristic value or h(n) of each. Thus, the “IComparable” interface, which

allows object to be compared or sorted based on a value was implemented into the Spot data type.

www.manaraa.com

50 | P a g e

All the Spot object’s attributes are mentioned below:

id: An array with two empty slots, in which the algorithm stores the column and row indices of

the Spot instance in the initial matrix. For instance, the id of the second Spot object in the third

row is [1, 2] (Figure 22).

Figure 22: id attributes of Spots.

name: A string representing name of each spot of the navigation model. This attribute is empty

by default.

pos: A Point3d object representing the (x,y,z) coordinates of the Spot object on the Cartesian

system.

cellSize: A double? precision number representing the distance between each Spot instance,

which is equal to the size of the cells in the navigation model.

lb: A precision number presenting the lower angle bound attribute of each Spot instance in

degree. This attribute is required by the pathfinding algorithm to evaluate the line-of-sight range

of the Spot.

www.manaraa.com

51 | P a g e

ub: A precision number presenting the upper angle bound attribute of each Spot instance in

degree. This attribute is required by the pathfinding algorithm to evaluate the line-of-sight range

of the Spot.

los: A Boolean representing the Line-of-sight attribute of the spot relative to it’s ‘parent’ spot. If

a Spot has line-of-sight to its parent, this attribute is true; otherwise, it is false. At the beginning

of the algorithm all the model’s Spots have true as their los value.

closedSet: A Boolean that shows if the spot was expanded before or not.

f: A number representing the total cost function of the Spot.

g: A number representing the cost of going from the start Spot to this Spot.

h: A number representing the heuristic guess value of the Spot (the estimated cost of going from

this Spot to the destination Spot).

parent: A property of Spot object for storing another Spot object as parent of each node.

neighbors: Spot ids of the eight (cardinal and diagonal) neighboring Spots of the current Spot

(Figure 23).

Figure 23:Neighbors attribute of a Spot.

adjCells: A list of Cell data types where the algorithm stores the four neighbor Cells of the Spot

(Figure 24).

www.manaraa.com

52 | P a g e

Figure 24: Adjacent Cells of a Spot.

4.3.1.2- Spot Object Methods

Construction Method: All objects require a construction method to be instantiable. A Spot

object’s construction method requires three inputs:

1- A two-slot array of numbers related to the location of the spot in the Cartesian system. The

construction method stores this array in the “pos” attribute of the Spot object (Spots are always

at Z=0).

2- A two-slot array of numbers related to the id of the Spot in the initial matrix of Spots. This array

will be stored in id attribute of the Spot by construction method.

3- A precision number, which is related to the cell size of the navigation model. The construction

method stores this value in the “cellSize” attribute of the Spot object.

getNeighbors Method: This method has been designed to find all eight neighbors of each Spot

in the navigation model and store them in the “neighbors” attribute of that Spot.

CompareTo Method: This method gets one Spot object other than the current Spot object and

compares the current Spot’s f attribute with the f attribute of the other Spot. Eventually, it returns

(0) if two Spots have the same f value, (1) if the current Spot has a bigger f attribute, and (-1) if the

www.manaraa.com

53 | P a g e

current Spot has a smaller f value. It is possible to sort a list of Spots based on their f attributes

using this method or to store them in a priority queue data structure.

4.3.1.3- Cell Object Attributes

The Cell object was designed to store and represent Cells of the navigation model. Therefore, its

attributes and methods were defined based on the requirement of AP-Theta* algorithm.

All the Spot object’s attributes are mentioned below:

wall: An integer that represents if the Cell is an obstacle or not. Obstacle Cells have (1) as their

wall attribute, while walkable Cells’ wall attribute is equal to (0).

cornerSpots: An array of Spots with four slots, in which the algorithm stores Spots located on

the corner of the Cell (Figure 25).

Figure 25: Spots located on the corners of a Cell object.

www.manaraa.com

54 | P a g e

4.3.1.4- Cell Object Methods

Construction Method: The construction method of the Cell objects requires two inputs:

1- A precision number, which is related to cell size of the navigation model. This value will be used

only for visualizing the Cell.

2- An integer that defines the wall attribute of the Cell. The construction method stores this value

in the wall attribute of the Cell.

display Method: This method visualizes the Cell object in the Rhino viewport. The method

extracts the four stored Spots from the “cornerSpot” attribute of the Cell and draws a shape in the

Rhino viewport: an empty rectangle if the wall attribute is (0) or a colored rectangular surface if

the wall attribute is (1).

4.3.2- Methods

This section introduces and explains methods that were developed specifically for this project.

Other methods are similar to the ones explained in the original AP-Theta* (Nash, et al. 2007).

4.3.2.1- Theta

This method was designed to get three Spots and calculate the angle between them. The angle

then will be used by the AP-Theta* algorithm to define the angle range of the Spots or evaluates if

a Spot has line-of-sight to another Spot.

If S1, S2, and S3 are three input points in a sequence, then the method needs to calculate four

values before calculating the angle between three spots:

1- DP: Dot-product of the vector from S2 to S1 and the vector from S2 to S3.

www.manaraa.com

55 | P a g e

2- Z: Z value of the cross-product of the vector from S2 to S1 and the vector from S2 to S3.

3- M1: Magnitude of the vector between S2 and S1.

4- M2: Magnitude of the vector between S2 and S3.

If Z is positive, then the method returns:

Acos (DP / (M1 * M2)) * (180 / PI)

If the Z is negative, then the method returns:

Acos (DP / M1 * M2)) * (-180 / PI)

4.3.2.2- Build Path

The “Build Path” method was designed to build a sequence of Spots that are on the shortest path

found by the algorithm. The Shortest path will be generated by connecting these Spots together.

It requires three inputs:

1- An empty list of Spots.

2-The Goal Spot.

3- The Start Spot.

First the method stores the Goal Spot into the empty list, then recursively stores parents of each

Spot into the list starting from the Goal Spot until it reaches the Start Spot. Eventually, it returns

the list, which is now filled with the sequence of Spots from The Goal Spot to the Start Spot. The

route or path can be visualized in plan by drawing over the original CAD/BIM data. The path is

simply produced by connecting the Spots with a polyline.

It is worth mentioning here that, in order to evaluate results of the algorithm, several test

prototypes were generated in Processing programming language. After making sure that all parts

of the algorithm work as intended, it was rewritten in C# for Circulation toolkit and in Swift 4 for

indoor PNS. The test prototypes are available in Code appendix of the project.

www.manaraa.com

56 | P a g e

4.4- Congestion Analysis prototype

Congestion is one human-level spatial quality of the interior space, which is directly related to

circulation design of the building. In work environments, congestion can have a positive effect on

human experience and improve performance of the workplace by activating the space and creating

productive interaction between employees. On the other hand, in some public buildings like

courtyards or malls, being informed about the locations within the space with a high chance of

congestion helps architects and interior designers to decide on the position of certain amenities

and security features. For instance, architects can improve positioning security or information

centers in courtyards or locate amenities, small vendors and cafe shops utilizing information

about highly congested places in the designed floorplan. Therefore, the purpose of the first

prototype developed in this work is to identify the locations with a high chance of congestion

inside a given floorplan by calculating the routes between locations defined by the architect and

measuring the density of routes inside the space as discussed in (Nagy, et al. 2017).

All the analysis results provided in this section are about the floorplan of Architecture Hall

building at the University of Washington, and a Grasshopper plugin called Mouse which was

developed by the author is used in the analysis prototype (Figure 26).

www.manaraa.com

57 | P a g e

Figure 26: Architecture Hall first floor.

4.4.1- Navigation Model (MouseTrap)

After importing the floorplan that contains Room Data from Revit to Rhino and changing the

hatch objects representing the Room Data, the first step is to generate the navigation model using

the Room Data of the floorplan. This can be done using the MouseTrap component of the Mouse

plugin. Required inputs of this component are: number of subdivisions of the navigation model’s

grid cells, which will be used for discriminating walkable-cells from wall-cells, Breps representing

the Room Data of the floorplan, and the cell-size of the navigation model (Figure 27).

www.manaraa.com

58 | P a g e

Figure 27: Architecture Hall navigation model generated by MouseTrap component.

The cell-size must be in the same units as the Rhino model. For instance, if the model is in the

metric system, cell-size must be defined in the metric system too.

Since zones of the floorplan with higher chance of congestion are the ones that occupants of

distinct parts of the building pass through to access other parts regularly, the metric defined for

measuring the level of congestion in this prototype is density of routes inside a portion of the

floorplan.

4.4.2- Super Cells

The first step for measuring route density was to define a grid with super cells on top of the plan.

Since these cells are larger than the navigation model’s cells, they are called super cells in this

work. The main reason behind this step is that, congestion occurs between people when they pass

within a certain distance of each other. In other words, if two individuals pass each other when

www.manaraa.com

59 | P a g e

they have for example less than 3 meters distance, it is safe to say that congestion occurs between

them, but if they pass each other while they have more than 5 meters distance from one another,

no congestion happens between them. To the best of my knowledge, no research has been done

for measuring the maximum distance between people when congestion occurs. Apart from that,

congestion’s maximum distance depends on functionality of the space and it changes in various

projects. Therefore, it was considered as an input for the analysis tool, which the architect defines.

Therefore a 9 𝑚2 grid was generated on top of Architecture Hall example. Since areas of the

walkable parts of the plan located in each of the super cells are different, the number of cells from

the navigation model’s walkable cells in each super cell determines the area used in measuring

the route density in the super cell (Figure 28). This effectively ignores portions of the super cell

extending outside the building.

Figure 28: Super cells colored in red on top of the navigation model.

www.manaraa.com

60 | P a g e

4.4.3- Start and Destination Points

Next, it is required to define start points and destination points for occupants of the building, as

these become paths. This can be easily done by identifying initial locations of the occupants and

all the possible places that they would go. For example, all the work stations on the first floor of

Architecture Hall are considered as start points, since professors and students use them during a

regular day. They are also parts of the destination points too, because it is fairly common for

students to go visit their professors in their offices, or professors regularly go to their colleagues’

offices for meetings. In addition, existing doors, stairs, elevators, and bath rooms are all feasible

start points and destination points. In Figure 29, green circles represent occupants of Architecture

Hall’s first floor. Although all the work stations and classroom/auditorium seats are not occupied

regularly, it is essential to identify all of them to the congestion analysis tool, since it will make

results of the analysis more accurate.

Figure 29: Possible start points and destination points in the floorplan.

www.manaraa.com

61 | P a g e

4.4.4- AP-Theta* Solver (Mouse)

The second component of the Mouse plugin is an AP-Theta* solver called Mouse. Generating the

data structure required for the algorithm, and execution of the algorithm itself will happen in this

component. Thus, it will calculate the shortest walking distance between all the points defined as

start locations and destinations and represent them as Polylines in Grasshopper. Apart from start

and destination points, context, and wall-data of the navigation model, which are outputs of the

MouseTrap component, plus the cell size used in generating the navigation model are required

inputs of Mouse component. Figure 30 illustrates all the 23,350 possible routes in the

Architecture Hall floorplan based on the position of the occupants and their possible destinations

from Figure 29. In other words, if an occupant decides to go to each of the destination points, the

path he or she would take is extremely similar to one of the paths generated by the Mouse

component.

Figure 30: All the possible routes, generated between start and destination points

www.manaraa.com

62 | P a g e

4.4.5- Route Density and Data Interpretation

As mentioned previously, the metric defined for identifying locations with a high chance of

congestion is the density of routes in super cells. Route density in each of the super cells can be

calculated as a function of the number of routes that pass through each super cell, and the area of

walkable parts of the floorplan located in each super cell, as expressed in the following equation,

where D represents density of routes, R is number of routes in each super cell, N is number of

walkable navigation cells in super cell, and S is cell-size of the navigation model.

𝑫 =
𝑹

𝑵 ∗ 𝑺𝟐

In order to visualize the highly congested locations on the floor plan, a heat-map was generated

on top of super cells’ grid based on the route density of each super cell. A color in the range from

dark blue to bright red was selected for each supper cell, such that the super cell with highest

density value will be illustrated as red and the super cell with the lowest value will be illustrated

as blue. Figure 31 demonstrates the congestion heat map of the first floor of Architecture Hall,

and Figure 32 illustrates the number of routes, plus walkable areas in highly congested super cells

around the core of the building.

www.manaraa.com

63 | P a g e

Figure 31: Heat map demonstrating congestion chance on a floorplan.

Figure 32: Walkable area in each (A) and number of routes (B) in super cells around the core.

www.manaraa.com

64 | P a g e

Comparing the results of the analysis with what students and faculty experience during a regular

day in the first floor of the building indicates that the results are fairly close to reality, especially

during class changes. For instance, the areas around the core of the building are extremely

congested locations from the morning until noon when all the classes are operating. In addition,

the super cells that contain the stairs are highly congested locations too, since individuals need to

use them in order to access the building’s rest rooms. Therefore, clearly these results could provide

some insights about the quality of the circulation design for the architects during the design

process of the building.

4.5- Emergency Evacuation Prototype

Emergency evacuation is another situation which is extremely sensitive to the circulation design

of the building. While complicated and inappropriate circulation design might increase casualties

during a disaster, proper circulation design might save lives and reduce confusion during a

catastrophe. Therefore, many regulations and rules related to emergency evacuation of a building

are provided in building codes. However, rules related to congestion and traffic during egress,

which can be more dangerous than the disaster itself in some scenarios, are missing in building

codes (Canter 1980).

Literature related to emergency egress indicates that the most crucial parameter during

evacuation of a building is time, which is affected by occupants’ uncertainty on deciding which

exit path to take, length of the route to exits, and congestion during an evacuation (Canter 1980).

The circulation design of the building has a direct impact on all these parameters. Hence, the

purpose of the second circulation analysis prototype developed in this research is to provide

insights for architects during the design process related to evacuation time, and congested areas

of the floor plan during emergency egress. As with the first prototype, the analysis in this section

was done on Architecture Hall’s first floorplan.

The first step in developing an emergency evacuation analysis tool was to design a new metric for

identifying locations in the floorplan with a high chance of congestion, because density of routes

is not a proper metric for this purpose. This is due to the fact that, no congestion in locations with

high density of routes would occur during egress if people pass through them in various times.

www.manaraa.com

65 | P a g e

Similarly, locations with lower density of routes might be highly congested locations during egress

if many individuals pass them at the same time. Therefore, the highest density of bodies that

occupy each super cell at the same time during the total egress process was chosen as a congestion

measurement in this prototype. The equation below was used for calculating body density in each

super cell. D represents highest density of bodies that attend each super cell at each time during

the egress process, H is the highest number of bodies present at the same time in each super cell

during the evacuation process, N is number of walkable navigation cells in each super cell, and S

is cell-size of the navigation model.

𝑫 =
𝑯

𝑵 ∗ 𝑺𝟐

In order to calculate the density of bodies in each super cell, it was required to simulate a complete

emergency evacuation process on the floorplan.

4.5.1- Start Points and Destinations

In contrast to the first prototype in which defined start and destination points were one set of

points and routes between all of them were required for the analysis, start points and destination

points in the emergency evacuation prototype have to be distinct sets of points. All the possible

locations of individuals in the floorplan, like work stations and offices, are start points, and all the

exit doors are destination points during emergency egress. Figure 33 demonstrates defined start

and destination points in the Architecture Hall example.

www.manaraa.com

66 | P a g e

Figure 33: Start points (circles) and exit doors (squares) for emergency egress.

4.5.2- Route Generation

After defining start and destination points, the shortest paths to the exit door closest to each

individual had to be generated. In order to do that, shortest paths between each start point and

all the available exit doors were generated, and the shortest path was selected for each start point.

The closest exit door for each occupant was found based on the shortest realistic walk between

doors and occupants instead of Euclidean distance between them. Figure 34 illustrates the

calculated shortest path between each occupant and the closest exist to him/her.

www.manaraa.com

67 | P a g e

Figure 34: Shortest paths to closest exits for each occupant.

4.5.3- Body Density and Data Interpretation

As mentioned before, the body density in each super cell is equal to highest number bodies in each

super cell divided by the walkable area of floorplan located in that super cell. The size of the super

cells in this analysis was reduced to 4 𝑚2, since congestion during emergency egress occurs in

smaller areas than regular congestion. To calculate the highest number of bodies that a super cell

ever experiences during the evacuation, the entire process has to be simulated. In other words, all

the individuals must start evacuating the building at the same time using the paths to the closest

exits, which were generated by the AP-Theta* solver for them. The simulation also requires

www.manaraa.com

68 | P a g e

specialized human travel speed data during evacuation. Much research has been done on

measuring human’s travel speed on distinct types of surfaces (horizontal, incline, etc.). Several

factors influence a person’s movement speed, like age, gender, grouping (family, friends, etc.),

physical ability, and environmental conditions. However, based on the experimental travel speed

data base provided in (Fahy and Proulx 2001) human movement speed during emergency egress

inside public buildings (theaters and educational buildings) are between 0.33 𝑚/𝑠 and 2.33 𝑚/𝑠.

Hence, 1.33 𝑚/𝑠 was selected as the average speed of occupants in the Architecture Hall example.

When the simulation starts, occupants begin to move to the closest exit at the same time with the

defined travel speed. While time continues to run, bodies move from one super cell to another

until they reach their exits. Therefore, the number of bodies in each super cell changes. At each

second, the algorithm computes the number of bodies in each super cell. This is compared to the

maximum that super cell has seen and stored if larger. The highest numbers will always be stored

and replace the lower numbers. The moment the last occupant reaches an exit, time will stop, and

the density of bodies in each cell will be calculated. For visualization purposes, an upper limit was

defined for the body density of each cell. In other words, cells with density higher than the upper

limit will be illustrated as red, while a color between red and dark blue will be selected for the rest

of the super cells. For instance, the upper limit selected for Architecture Hall example is 5 bodies

in a super cell (4 𝑚2) as illustrated in Figure 35.. Furthermore, Figure 36 demonstrates the

number of walkable navigation model cells, as well as the highest number of bodies that each

super cell around the core of the building experienced during the whole simulation.

It is worth mentioning here that, the value for heatmap’s upper limit, and size of the super cells

are inputs for the analysis tool, which will be defined by the architect based on the functionality

of the project.

www.manaraa.com

69 | P a g e

Figure 35: Heat map illustrating the congested locations of the floorplan during the egress process.

Figure 36: Number of walkable navigation model cells (A) and highest number of bodies (B) in super cells around
the core.

www.manaraa.com

70 | P a g e

Associating the heat map generated by the analysis prototype with what may happen in an actual

emergency evacuation scenario indicates that the results of the analysis are believable, since most

of the red areas are locations with limited walkable area close to crowded locations of the

floorplan. For example, most of the inner doors of the space are colored as red since they have

constrained space around them and many people arrive to those areas at the same time, also the

locations between the seats of the amphitheater are extremely congested locations in real world

which was identified by the algorithm. Tools like the emergency evacuation analysis prototype in

this project may provide useful information about emergency evacuation of a building and identify

dangerous locations during emergency egress.

4.6- Personal Navigation Assistant

People avoid going to places that they feel they will get lost. This is similar to an actual barrier that

stops people from using buildings with complicate circulation. This problem was addressed by

Pedestrian Navigation Systems like Google Maps, or Maps by Apple in outdoor environment and

urban layouts. However, in order to navigate complex public buildings, individuals must rely on

their general understanding of structure and layout of the building, and their past experiences.

Hence, an indoor pedestrian navigation system was developed using the in the third prototype.

In this prototype, circulation toolkit will be used to address three main challenges in the way of

developing a practical PNS for indoor environment. Hence, navigation model generated by

circulation toolkit will be used to identify walkable areas of the navigation model and

discriminated them from location of furniture and walls inside the floorplan.

Apart from that, pathfinding algorithm of the circulation toolkit will be used to generate paths

that connect any two locations inside the building without any need for predefined network of

routes.

Finally, Data from smartphone’s sensors will be utilized to track movement of the user and locate

him/her inside the building using dead reckoning localization method.

www.manaraa.com

71 | P a g e

4.6.1- Visualizing the Floorplan

The first step in developing the navigation application was to visualize the floorplan in the

application. A vector image is better than a raster image for this purpose, because it does not

pixelate when a user zooms in on a specific part of the plan. Fortunately, the iPhone API supports

two vector image formats, which are SVG and PDF. However, in order to visualize each of these

formats various user interface elements had to be used. To show a SVG image on the iPhone

display, a WKWebView element must be used and to show a PDF, a UIImageView element has to

be used.

Since the purpose of WKWebView is to provide the possibility of creating an internet browser, it

does not support all the required features for developing an application that allows user to interact

with the display. For instance, it does not provide the possibility to access information about the

location of the user’s touch on the screen. Therefore, it was decided to use PDF as the format for

visualizing the floorplan in the application. Figure 37 illustrates the PDF generate from the first

floorplan of Architecture Hall for the navigation application.

Figure 37: PDF file generated from the floorplan.

www.manaraa.com

72 | P a g e

4.6.2- Proper Data (Maps) From Inside the

Building

In contrast to outdoor environments and urban layouts, where huge databases of maps and

information about size and location of obstacles and buildings are available, indoor spaces often

lack navigational maps and plans. This problem was addressed by the automated process of

generating the navigation model from the Room-Data of the floorplan developed for the

circulation analysis toolkit in this project. However, the navigation model was generated in

Grasshopper using the C# programming language. Since C# objects are not compatible with the

Swift programming language, in order to transfer the navigation model to the iOS platform, a

JSON object was created in Grasshopper, which contains wall property values of the navigation

model’s cells.

The JSON object consists of a two-dimensional array of zeros and ones that represent the

sequence of navigation model ‘s cells in rows and columns. Zeros represent walkable cells and

ones represent unwalkable cells in the JSON object. Figure 38 shows the value representing each

cell in the JSON object.

www.manaraa.com

73 | P a g e

Figure 38: wall values of the JSON object.

Eventually, the JSON object was deserialized in the XCode, which is the Integrated Development

Environment for all the Apple products like iOS or MacOS and generates the same two-

dimensional array as the one generated in the first place in Grasshopper. It is possible to create

the navigation model for the smartphone application using this information. To do that, the width

of the PDF file generate from the floorplan was extracted from the UIImageView element that

contains it, then that number was divided to the number of columns of the array, which will return

the size of the navigation cells on the iPhone display. Then, a UIView element with the same size

as the UIImageView that contains the visualization PDF was added as a sublayer of the

UIImageView and placed on top of it. This UIView element is the container of the navigation

model. Eventually, nodes and cells of the navigation model were generated inside this UIView.

Figure 39 shows the sequence of layers used in the process of visualizing the floorplan on the

phone’s display and generating the navigation model on top of the visualization layer. The UIView

that contains the navigation model also detects the user’s touch interaction with the phone’s

screen and converts the location of user’s touch to the closest node of the navigation model to that

www.manaraa.com

74 | P a g e

location. It is worth mentioning here that in the final product, similar to the circulation analysis

prototypes, cells and nodes are hidden to the user.

Figure 39: UIView elements of the navigation App.

4.6.3- Localization

Dead reckoning is a localization method that calculates the location of a user based on a known

initial position, direction of the user’s movement, and distance of the user’s motion. Figure 40

demonstrates the dead reckoning localization method. In this technique, a recent location of the

user will be calculated by moving from the previous location using a vector created with direction

and distance of the movement.

www.manaraa.com

75 | P a g e

Figure 40: Dead reckoning localization process.

4.6.3.1- Initial Location

In order to define the initial location of the user for the navigation application, three methods

were designed, after:

First, the user can identify his initial location by touching his approximate location in the floorplan

displayed on the phone’s screen (Figure 41).

www.manaraa.com

76 | P a g e

Figure 41: Initial location defined by touching phone's screen.

The second method for defining the start location is by entering the name of that location. As

mentioned before, “name” is a string property of a spot object, which is empty by default.

However, in this prototype the “name” attribute of one spot-object located in each room was

assigned to the name of that room. Hence, the second method for defining the start location is by

entering the name of any room in the UITextBox element provided in front of the “SET START”.

Eventually, by pressing the “SET START” the spot with “name” attribute equal to what was

entered in the UITextBox will be selected as the initial location (Figure 42).

www.manaraa.com

77 | P a g e

Figure 42: Defining the start location by entering the name of that location.

The final technique that allows users to define their initial location is by scanning a QR Code

provide in their location using the phone’s camera. QR Codes provided in a predefined location

in each room of the floorplan. These QR Codes have the “id” attribute of the nodes that they are

associated with embodied in them. Pressing the “SCAN” button provides the possibility to scan

the QR Code (Figure 43).

www.manaraa.com

78 | P a g e

Figure 43: Defining the start location of the user by scanning a QR Code.

After defining the initial location by using one of these three techniques, the start location will be

displayed on the phone’s screen as a green circle (Figure 44).

Figure 44: The start location displayed on the phone's screen by green circle.

www.manaraa.com

79 | P a g e

4.6.3.2- Destination Location

In the next step, the user’s destination in the floorplan has to be defined. The navigation

application provides two methods for defining the goal location. First, similar to first method for

defining the initial location of the user, it is possible to identify the destination by touching the

approximate location of the end point on the floorplan.

Second, the goal point can be defined by entering the name of the location in the “UITextBox”

element provided in front of the “SET GOAL” button and pressing the button. After identifying

the destination, it will be illustrated by a red circle on the phone’s display (Figure 45).

Figure 45: The destination displayed on the phone's screen by red circle.

www.manaraa.com

80 | P a g e

4.6.3.3- Direction and Distance of the Motion

By pressing the “RUN” button after designating the initial and goal locations, the application

generates the path that connects them using the Theta* algorithm. In order to track the location

of the user with the dead reckoning localization method, information about the direction and

distance of the user’s motion are required in addition to initial location. Fortunately, iOS SDK2

provides the possibility to access this information.

“CoreLocation” is the default library of the iOS platform that supplies information and services

for determining an iPhone’s geographical location, altitude, orientation, or position relative to a

close iBeacon3. All the available onboard hardware, including Wi-Fi, GPS, Bluetooth,

magnetometer, barometer, and cellular hardware will be employed by the framework to gather

data (Apple 2018).

The “locationManager” method of the “CoreLocation” library is the method that generates

information about the phone’s orientation in the format of angle from true north. In order to

visualize the orientation of the phone relative to the orientation of the floorplan in the navigation

application, a small black circle is generated inside the green circle representing the location of

the user. The black circle rotates around the center of the green circle based on the information

generated by the “locationManager” method (Figure 46). It is worth mentioning here that the PDF

representing the floorplan of the building in the navigation application is oriented with true north

aligned with top of the phone (Figure 47).

2 Software Development Kit.
3 iBeacon is an Apple technology that creates a way for providing location-based information and services
to iPhones and other iOS devices.

www.manaraa.com

81 | P a g e

Figure 46: Orientation of the phone's visualization.

Figure 47: Orientation of the floorplan's visualization.

www.manaraa.com

82 | P a g e

“CoreMotion” is the default library of the iOS platform that reports data related to motion and the

environment from the onboard hardware of iOS devices, including accelerometer, gyroscope,

magnetometer, and barometer. While some services of this framework let developers access raw

values recorded by the hardware, others provide processed version of those values (Apple 2018).

The “CMPedometer” object of the “CoreMotion” library, which provides information about

distance of the motion, number of steps, and type of user’s activity (running, walking, taking

stairs, etc.) was instantiated and the motion’s distance was combined with the motion’s direction

generated by “locationManager” to create the user’s motion vector. Eventually, the green circle

that represents the location of the user moves using the generated motion vector (Figure 48).

Figure 48: User's localization inside the navigation application.

www.manaraa.com

83 | P a g e

5- Discussion and Conclusion

In this project I have done a survey on how the circulation design of a building might affect its

performance during use. I explained three aspects of circulation that influence design of the

building.

First, I described the concept of congestion and its effects on human-experience inside a building.

Then I clarified how circulation design during the architectural design process affects occupant

safety during a disaster, and how more sensitive circulation design is essential for reducing

casualties during a catastrophe. Eventually, I explained the concept of wayfinding in complex

architectural settings and how people avoid confusing and complicated environments.

Next, I proposed an algorithmic approach to circulation and developed a computational toolkit

that can be used during the design phase of the building, or after construction to improve its

circulation performance.

The circulation toolkit extracts a navigation model from an architectural floorplan in the format

of CAD or BIM and generates optimal and realistic looking routes that mimic human movement

behavior between any two locations inside the building.

Finally, I developed three prototypes using the circulation toolkit to provide some information

and insight about the challenges that interior circulation creates for performance of the building.

5.1- Advantages and Opportunities

The main advantages of the proposed circulation toolkit in comparison to other circulation

computational tools are:

1. The proposed toolkit is relatively quick and computationally cheap in comparison to

agent-based crowed simulation tools that are popular in the architecture industry.

Although, with emergence of modern graphic processors and GPU computing methods,

www.manaraa.com

84 | P a g e

agent-based crowd simulations are not as slow and time consuming as they used to be,

these tools are still slower than the proposed method.

2. The proposed circulation toolkit mimics human behavior inside a building more

accurately than agent-based crowd simulation tools. This is due to the fact that human

movement behavior happens when the destination location and the path to it are already

imagined by the person. However, agents of agent-based tools are moving inside the space

mindlessly according to rules that define their interaction with other agents and the

environment of the simulation in most scenarios.

3. The pathfinding algorithm used in developing the circulation toolkit, which is called

Theta* is the most compatible pathfinding algorithm for architectural analysis, because in

contrast to other pathfinding algorithms, which are limited to the edges of the navigation

grid and generated zig zag and unrealistic looking paths, Theta* generates routes which

are similar to human movement behavior.

4. Since the circulation toolkit is developed as a plugin for design software, that is commonly

being used in most architecture firms and schools, it is more likely for it to become part of

standard architectural framework than agent-based simulation tools, which mostly are

expensive independent software programs. In addition, data transfer problems between

architectural design software and simulation tools do not exist for the circulation toolkit.

5. While considering furniture of the building is a rare feature in most indoor pedestrian

navigation systems, in the PNS prototype developed in this project all furniture of the

building become part of the navigation model. The method used for generating the

pedestrian navigation model in this project also provides the possibility for architects to

consider furniture of the building in their analysis.

6. The dead reckoning localization method used in the PNS prototype for tracking the user

omits expensive infrastructure required for commonly used localization methods like

indoor GPS, Wi-Fi finger printing, Wi-Fi triangulation, etc.

www.manaraa.com

85 | P a g e

5.2- Directions for Future Research

As mentioned before, the fundamental requirement of using the circulation is having access to

architectural floorplan in the computational formats like CAD or BIM. While this data is available

for m0st recently constructed buildings, some of the older ones lack this data, since their

architectural documents and drawings were developed originally on paper. There are huge

databases of scans from public buildings’ floorplans available online, which are not useable by the

circulation toolkit. Hence, developing an automated process for generating navigation model

from architectural documents and drawings in formats other than CAD or BIM is one of the areas

to continue this research.

While agent-based crowed simulation tools are slower and more computationally expensive than

the circulation toolkit, they are becoming faster day by day with the advent of extremely fast and

inexpensive CPUs and GPUs. Therefore, computational power and speed is hardly going to be a

problem for agent-based simulation tools. Consequently, comparing the results of analysis done

by the circulation toolkit with the results of the same analysis done by agent-based simulation

tools to evaluate their precision and speed is one area of required research for the future.

Moreover, integrating the circulation toolkit approach with agent-based simulation tools to

develop a new approach to analyzing and evaluating human behavior inside architectural space is

an interesting area of research for the future.

Evaluating the results of circulation analysis using the circulation toolkit based on actual human

experience inside the space requires more research for the future too. Although the circulation

toolkit mimics human movement behavior accurately, there are many parameters in real-world

events that influence individuals, which do not exist in the computational simulation tools that

mimic human behaviors and experiences. Hence, in order to evaluate how accurate and reliable

the results of the circulation analysis are, in future research they have to be compared against

what people actually feel in the space.

Finally, although localizing the user in the pedestrian navigation system prototype by the dead

reckoning method omits the need for expensive infrastructures inside the building, this

localization method might not be accurate enough for a practical indoor PNS. This is due to the

fact that magnetic fields of electrical objects and devices present in the space influence the

gyroscope of the phone. Therefore, direction information generated by the phone’s gyroscope

alone always contains some error. In addition, since information about the distance of the user’s

www.manaraa.com

86 | P a g e

movement is an approximation based on numbers of steps he/she takes, it also contains some

level of errors. Although this error is not significant for each step, it accumulates during long

walks, therefore the user might end up in wrong locations after travelling long distances.

Consequently, finding a more accurate localization method, or developing new algorithms that

generate distance and direction information from the gyroscope and accelerometer more precisely

is another area of future research.

www.manaraa.com

87 | P a g e

References
Abdelgawad, H., B. Abdulhai, G. Amirjamshidi, M. Wahba, C. Woudsma, and M. J. Roorda. 2011.

"Simulation of exclusive truck facilities on urban freeways." Journal of Transportation

Engineering 137: 547-562.

Accelerometer. 2018. Wikipedia. 01 15. Accessed 01 15, 2018.

https://en.wikipedia.org/wiki/Accelerometer.

Ahlquist, Sean, and Achim Menges. 2011. "Methodological Approach for the Integration of

Material Information and Performance in the Design Computation for Tension-Active

Architectural Systems." In Proceedings of the 29th Conference on Education in Computer

Aided Architecture Design in Europe (eCAADe 2011). Ljubljana: eCAADe (Education and

Research in Computer Aided Architectural Design in Europe) and UNI Ljubljana, Faculty

of Architecture. 800-807.

2018. Apple. Accessed 03 07, 2018. https://developer.apple.com/documentation/corelocation.

2018. Apple. Accessed 03 08, 2018. https://developer.apple.com/documentation/coremotion.

Bellman, Richard. 1958. "On a routing problem , no. 1 (1958): 87-90." Quarterly of applied

mathematics 16 87-90.

Brown, J.S., and P. Duguid. 2000. The Social Life of Information. Boston: Harvard Business

School Press.

Canter, David V. 1980. Fires and human behaviour. John Wiley & Sons.

Carpman, Janet R., and Myron A. Grant. 2016. Design that cares: Planning health facilities for

patients and visitors. Vol. 142. John Wiley & Sons.

Chen, Guoliang, Xiaolin Meng, Yunjia Wang, Yanzhe Zhang, Peng Tian, and Huachao Yang. 2015.

"Integrated WiFi/PDR/Smartphone using an unscented kalman filter algorithm for 3D

indoor localization." Sensors 15 24595-24614.

Chen, Po-Han, and Feng Feng. 2009. "A fast flow control algorithm for real-time emergency

evacuation in large indoor areas." Fire Safety Journal 44 732-740.

www.manaraa.com

88 | P a g e

Chen, Zhenghua, Han Zou, Hao Jiang, Qingchang Zhu, Yeng Chai Soh, and Lihua Xie. 2015.

"Fusion of WiFi, smartphone sensors and landmarks using the Kalman filter for indoor

localization." Sensors 15 715-732.

Claxton, G. 2000. Hare Brain, Tortoise Mind: How Intelligence Increases When You Think Less.

New York: Harper Perennial.

Diakité, Abdoulaye A., and Sisi Zlatanova. 2016. "EXTRACTION OF THE 3D FREE SPACE FROM

BUILDING MODELS FOR INDOOR NAVIGATION." ISPRS Annals of Photogrammetry,

Remote Sensing & Spatial Information Sciences 4.

Diaz, Estefania Munoz. 2015. "Inertial pocket navigation system: Unaided 3D positioning."

Sensors 15 9156-9178.

Dijkstra, Edsger W. 1959. "A note on two problems in connexion with graphs." Numerische

mathematik 1 269-271.

Doran, Jim E., and Donald Michie. 1966. "Experiments with the graph traverser program." In

Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering

Sciences. The Royal Society. 235-259.

Drucker, P. 1959. Landmarks of Tomorrow. New York: Harper.

Fahy, Rita F., and Guyléne Proulx. 2001. "Toward creating a database on delay times to start

evacuation and walking speeds for use in evacuation modeling." 2nd international

symposium on human behaviour in fire. Boston, MA, USA. 175-183.

Feynman, Richard, Michael Gottlieb, and Ralph Leighton. 2013. Feynman's Tips on Physics, A

Problem-Solving Supplement to the Feynman Lectures on Physics. Basic Books.

Goetz, Marcus, and Alexander Zipf. 2011. ""Formal definition of a user-adaptive and length-

optimal routing graph for complex indoor environments.", no. 2 (): ." Geo-Spatial

Information Science 14 119-128.

Gyroscope. 2018. Wikipedia. 01 17. Accessed 01 17, 2018.

https://en.wikipedia.org/wiki/Gyroscope#Heading_indicator.

Hart, Peter E., Nils J. Nilsson, and Bertram Raphael. 1968. "A formal basis for the heuristic

determination of minimum cost paths." IEEE transactions on Systems Science and

Cybernetics 4 100-107.

www.manaraa.com

89 | P a g e

Johnson, G. Miles, and William W. Happ. 1977. "Digital simulation for detecting congestion in

hospital facilities." In Proceedings of the 9th conference on Winter simulation-Volume 2.

Winter Simulation Conference. 848-853.

Jones, Willie D. 2010. IEEE SPECTRUM. 01 29. Accessed 01 17, 2018.

https://spectrum.ieee.org/semiconductors/devices/a-compass-in-every-smartphone.

Khoshelham, Kourosh, and Sisi Zlatanova. 2016. "Sensors for indoor mapping and navigation."

655.

Korf, Richard E. 2010. Artificial intelligence search algorithms. Chapman & Hall/CRC.

Korf, Richard E., Michael Reid, and Stefan Edelkampz. 2001. "Time complexity of iterative-

deepening-A∗." Artificial Intelligence 129 199-218.

Li, Fan, Chunshui Zhao, Guanzhong Ding, Jian Gong, Chenxing Liu, and Feng Zhao. 2012. "A

reliable and accurate indoor localization method using phone inertial sensors." In

Proceedings of the 2012 ACM Conference on Ubiquitous Computing. ACM. 421-430.

Lindsay, Greg. 2013. "Engineering serendipity." New York Times 5.

Liu, L., and S. Zlatanova. 2011. "A "door-to-door" path-finding approach for indoor navigation."

In Proceedings Gi4DM 2011: GeoInformation for Disaster Management. Antalya,

Turkey.

Magnetometer. 2018. Wikipedia. 01 17. Accessed 01 17, 2018.

https://en.wikipedia.org/wiki/Magnetometer.

Makri, A., S. Zlatanova, and E. Verbree. 2015. "An approach for indoor wayfinding replicating

main principles of an outdoor navigation system for cyclists." The International Archives

of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Indoor-

Outdoor Seamless Modelling, Mapping and Navigation. Tokyo: the International Society

of Photogrammetry and Remote Sensing (ISPRS).

Mizaralkora. 2017. tumblr. 09 20. Accessed 01 17, 2018.

http://hugsforbears.tumblr.com/post/61746588103.

Mortari, Filippo, Sisi Zlatanova, Liu Liu, and Eliseo Clementini. 2014. ""Improved geometric

network model"(IGNM): A novel approach for deriving connectivity graphs for indoor

navigation." ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial

Information Sciences 2 45.

www.manaraa.com

90 | P a g e

Nagy, Danil, Villagi Lorenzo, Stoddart James, and Benjamin David. 2017. "The Buzz Metric: A

Graph-based Method for Quantifying Productive Congestion in Generative Space

Planning for Architecture." Technology| Architecture+ Design1 186-195.

Nash, Alex, Daniel Kenny, Koenig Sven, and Felner Ariel. 2007. "Theta^*: Any-Angle Path

Planning on Grids." In AAAI. Vancouver: AAAI Press. 1177-1183.

Newell, Allen, and Herbert Alexander Simon. 1972. Human problem solving. Vol. 104. 9 vols.

Englewood Cliffs, NJ: Prentice Hall .

Passini, Romedi. 1996. "Wayfinding design: logic, application and some thoughts on universality."

Design Studies 17 (3): 319-331.

Qian, Jiuchao, Ling Pei, Jiabin Ma, Rendong Ying, and Peilin Liu. 2015. "Vector graph assisted

pedestrian dead reckoning using an unconstrained smartphone." Sensors 15 5032-5057.

Reckoning, Dead. 2018. Time and Navigation. Accessed 01 15, 2018.

https://timeandnavigation.si.edu/navigating-at-sea/navigating-without-a-clock/dead-

reckoning.

Rindler, W. 2013. Essential Relativity: Special, General, and Cosmological. Springer.

Silverman, Rachel Emma. 2013. "The science of serendipity in the workplace." Wall Street

Journal B6.

Stentz, Anthony. 1994. "Optimal and efficient path planning for partially-known environments."

In Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

IEEE. 3310-3317.

Suchman, L. 2000. Making a case: ‘knowledge’ and ‘routine’ work in document production, in

P. Luff, J. Hindmarsh and C. Heath (eds): Workplace Studies: Recovering Work Practice

and Informing System Design . Cambridge: University Press, Cambridge.

Tinder, Richard F. 2007. Relativistic Flight Mechanics and Space Travel: A Primer for Students,

Engineers and Scientists. Morgan & Claypool Publishers.

Worthington, Arthur M. 1906. Dynamics of Rotation. London, New York, Bombay: Longmans,

Green and Co.

www.manaraa.com

91 | P a g e

Wu, Hua, Alan Marshall, and Wai Yu. 2007. "Path planning and following algorithms in an indoor

navigation model for visually impaired." In Second International Conference on Internet

Monitoring and Protection, ICIMP. IEEE. 38-38.

Xu, Man, Shuangfeng Wei, and Sisi Zlatanova. 2016. "AN INDOOR NAVIGATION APPROACH

CONSIDERING OBSTACLES AND SPACE SUBDIVISION OF 2D PLAN." International

Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences 41.

Xu, Man, Shuangfeng Wei, Sisi Zlatanova, and Ruiju Zhang. 2017. "BIM-BASED INDOOR PATH

PLANNING CONSIDERING OBSTACLES." ISPRS Annals of the Photogrammetry,

Remote Sensing and Spatial Information Sciences 4 417-417.

Xu, Zhiguang, and Michael Van Doren. 2011. "A Museum Visitors Guide with the A* pathfinding

algorithm." In International Conference on Computer Science and Automation

Engineering (CSAE). IEEE. 62-66.

Yap, P. 2002. "Grid-based path-finding." In Proceedings of the Canadian Conference on

Artificial. Heidelberg, Berlin: Springer. 44-55.

Zhu, Q., Q. Xiong, S. Zlatanova, Z. Du L. Huang, and Y. Zhou. 2013. "Multi-dimensional indoor

location information model." Acquisition and Modelling of Indoor and Enclosed

Environments 2013. Cape Town, South Africa: ISPRS Archives Volume XL-4/W4.

Zlatanova, Sisi, and Safiza Suhana Kamal Baharin. 2008. "Optimal navigation of first responders

using DBMS." In 3rd international conference on information systems for crisis response

and management 4th international symposium on geoInformation for disaster

management. Washington, DC: ISCRAM. 541-54.

www.manaraa.com

92 | P a g e

